(上不了p站我要死了,侵权度娘背锅)

Description

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。

Input

输入第一行包含一个整数T,表示数据组数。

第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。

1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

Output

输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。

Sample Input

2

1 4 5

2 4 5

Sample Output

2

5

//【样例说明】满足条件的2个序列为[4]和[5]。

好吧。。。我自己根本想不出来

如果单调不降难以求出来,而单调上升很容易求出来,那么为什么不把单调不降转为单调上升呢?

把第i位加上i,于是就将问题转为了在[l+1,r+n]中选n个不同的数出来,按从小到大的顺序排列。方案数为C(r-l+n,n)。

然后要求长度为1~n的方案数

全部列出来:



很是巧妙啊

组合数中的添项拆项(C(n,1)=C(n,n)=1)化项(C(n,n)=C(n+1,n+1))的运用,通常都是向递推式C(n,m)=C(n-1,m)+C(n-1,m-1)看齐。

代码(记得处理负数)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#ifdef WIN32
#define RIN "%I64d"
#else
#define RIN "%lld"
#endif
#define ll long long template <typename T>inline void read(T &res){
T k=1,x=0;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-')k=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
res=k*x;
} const ll mod=1e6+3; ll jiec[mod+7],niy[mod+7];
ll n,l,r; void exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1,y=0;
return ;
}
ll x0,y0;
exgcd(b,a%b,x0,y0);
x=y0;
y=x0-(a/b)*y0;
}
ll inverse(ll a){
ll x,y;
exgcd(a,mod,x,y);
return (x%mod+mod)%mod;
}
void init(){
jiec[0]=niy[0]=1;
for(int i=1;i<mod;i++) jiec[i]=jiec[i-1]*i%mod;
niy[mod-1]=inverse(jiec[mod-1]);
for(int i=mod-2;i>=1;i--) niy[i]=niy[i+1]*(i+1)%mod;
}
ll comb(ll a,ll b){
return jiec[a]*niy[b]%mod*niy[a-b]%mod;
}
ll lucas(ll a,ll b){
if(a<b) return 0;
if(a==0&&b==0) return 1;
if(a<mod&&b<mod) return comb(a,b);
return lucas(a/mod,b/mod)*lucas(a%mod,b%mod)%mod;
}
void solve(){
read(n),read(l),read(r);
printf(RIN"\n",(lucas(r-l+n+1,n)-1+mod)%mod);
}
int main(){
init();
int t;
read(t);
while(t--) solve();
return 0;
}

【bzoj4403】【序列统计】不降转升+组合数添项合并的更多相关文章

  1. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

  2. BZOJ4403: 序列统计【lucas定理+组合数学】

    Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...

  3. 2018.09.09 bzoj4403: 序列统计(Lucas定理)

    传送门 感觉单调不降序列什么的不好做啊. 于是我们序列中下标为i的元素的值加上i,这样就构成了一个单调递增的序列. 问题就变成了: 求出构造长度分别为1 ~ n且每个元素的值在l+1 ~ r+n之间的 ...

  4. bzoj4403 序列统计——组合数学

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 一开始想了个 O(n) 的做法,不行啊... O(n)想法是这样的:先考虑递推,设 f ...

  5. bzoj4403: 序列统计

    我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...

  6. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  7. 【BZOJ4403】序列统计 Lucas定理

    [BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...

  8. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  9. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. Python3.7在win10下安装PyAudio库以及实现音频的录制与播放

    Python3.7 无法安装pyaudio 度娘的结果基本都是这个,pip install pyaudio.....然而十有八九你的电脑不买账,会报错. 报错信息: running install r ...

  2. (整)Unreal渲染模块 框总览

    @author: 黑袍小道 随缘查看     说明 由于搬山的渲染这部分担心自己理解错误,故而搬移官方下,后面整个完成再反过来更新 (这当且仅当做Unreal的帮助文档).     图形编程 模块 渲 ...

  3. mac book pro 安装keras (无gpu)

    转自http://www.jianshu.com/p/01dc42595733 注:Macbook pro 13' 没有NVIDIA的显卡,没办法CUDA编程,所以下面都是CPU编程. 1. 安装ho ...

  4. 使用SecureCRT设置linux系统登录的ssh公钥认证

    1.修改ssh配置文件/etc/ssh/sshd_configRSAAuthentication yes                             //使用RSA加密算法PubkeyAu ...

  5. Codeforces Round #386 (Div. 2) 746G(树的构造)

    大体题意 一棵树有n个结点,告诉你每层深度上有a[i]个结点,以及有多少叶子结点 让你生成这棵树 题解:考虑一颗树,如果满足每层深度上有a[i]结点,最多能有多少叶子结点 那么答案很简单,就是对(a[ ...

  6. [洛谷P2634][国家集训队]聪聪可可

    题目大意:给你一棵树,随机选两个点,求它们之间路径长度是$3$的倍数的概率 题解:点分治,求出当前状态的重心,然后求出经过重心的答案,接着分治每棵子树.注意考虑重复计算的情况 卡点:无 C++ Cod ...

  7. registry --------->仓库 ----------------->镜像

    registry --------->仓库 ----------------->镜像 本地镜像都保存在宿主机下 : /var/lib/docker/containers 镜像从仓库下载下来 ...

  8. BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】

    题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...

  9. 用HTML5绘制的一个星空特效图

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. Linux Ubuntu mysql 乱码

    进入mysql后,敲入命令status,就可以看到mysql的字符编码问题. 默认如下: Server characterset:    latin1 Db  characterset:    lat ...