You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].

Example:

Given nums = [5, 2, 6, 1]

To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.

Return the array [2, 1, 1, 0].

思路:O(nlogn)复杂度算法。

将数组排序然后构建二叉搜索树。一开始二叉搜索树上的节点都标记为未处理过。然后我们从所给的nums数组的最后一个数倒着向前遍历,依次将每一个数在二叉搜索树中对应的节点标记为处理过,然后返回二叉搜索树中已经被标记为处理过,且小于该值的个数。

具体实现中,我们在每一个节点中设置一个count变量,计数以该节点为根节点的子树中已经被标记为处理过的节点个数,初始为0。之后算法运行过程中不断更新该值并通过该值更快地求解。本质上来说这是一个线段树的应用。

当我们要求二叉搜索树中有多少被处理过的节点值小于所给的值时,有三种情况:

  • 所给的值是当前子树的根节点。则小于它的数只可能在左子树中,因此返回根节点左孩子的count值。
  • 所给的值在当前子树的左子树中。则小于它的数只可能在左子树中,因此递归求解,返回左子树中被处理过且小于所给值的节点个数。
  • 所给的值在当前子树的右子树中。则小于它的数可能在左子树中或者是该根节点,或者在右子树中。因此递归求解,返回左子树和根节点中被处理过且小于所给值的节点个数加上右子树中被处理过且小于所给值的节点个数。

二叉搜索树的构建O(n),二叉搜索树的单次查找更新操作O(logn)。 总复杂度为O(n) + O(nlogn) = O(nlogn)

 class treeNode {
public:
int val, count;
treeNode *left, *right;
treeNode(int v) : val(v), count(), left(NULL), right(NULL) {}
};
class Solution {
public:
//convert a sortedArray to a binary search tree and return a pointer to its root node
treeNode* buildTree(vector<int>& sortedArray, int left, int right) {
if (right < left) return NULL;
int mid = left + (right - left) / ;
treeNode* cur = new treeNode(sortedArray[mid]);
cur->left = buildTree(sortedArray, left, mid - );
cur->right = buildTree(sortedArray, mid + , right);
return cur;
}
//count numbers in this binary search tree that were processed and are less than the target
int update(treeNode* node, int target) {
if (node == NULL) return -;
if (node->val == target) {
node->count++;
return node->left ? node->left->count : ;
}
else if (node->val < target) {
int lessCount = node->count - node->right->count;
int rightCount = update(node->right, target);
node->count++;
return lessCount + rightCount;
}
else {
int leftCount = update(node->left, target);
node->count++;
return leftCount;
}
}
vector<int> countSmaller(vector<int>& nums) {
vector<int> sortedArray = nums;
sort(sortedArray.begin(), sortedArray.end(), less<int>());
treeNode* node = buildTree(sortedArray, , sortedArray.size() - );
vector<int> res(nums.size());
for (int i = nums.size() - ; i >= ; i--)
res[i] = update(node, nums[i]);
return res;
}
};

Count of Smaller Numbers After Self -- LeetCode的更多相关文章

  1. leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  2. leetcode 315. Count of Smaller Numbers After Self 两种思路

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  3. [LeetCode] 315. Count of Smaller Numbers After Self (Hard)

    315. Count of Smaller Numbers After Self class Solution { public: vector<int> countSmaller(vec ...

  4. [Swift]LeetCode315. 计算右侧小于当前元素的个数 | Count of Smaller Numbers After Self

    You are given an integer array nums and you have to return a new countsarray. The counts array has t ...

  5. [LeetCode] Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The counts array has ...

  6. LeetCode Count of Smaller Numbers After Self

    原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...

  7. LeetCode 315. Count of Smaller Numbers After Self

    原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...

  8. [LeetCode] 315. Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The countsarray has t ...

  9. leetcode@ [315/215] Count of Smaller Numbers After Self / Kth Largest Element in an Array (BST)

    https://leetcode.com/problems/count-of-smaller-numbers-after-self/ You are given an integer array nu ...

随机推荐

  1. webdriver--定位一组元素+iframe表单切换

    定位一组元素:find_elements,返回的是list,所以可以用列表的索引对列表里的某个元素操作,也可以用for循环访问list,依次操作各元素 driver.find_elements_by_ ...

  2. JMeter学习笔记(四) HTTP Cookies 管理器

    有些接口执行时,要求要先登录,此时就需要用到 HTTP Cookies 管理器.不过有些项目是使用的token,即添加HTTP信息头管理器,获取登录后的token,至于token与cookies的区别 ...

  3. NOIP2018 集训(三)

    A题 Tree 问题描述 给定一颗 \(n\) 个点的树,树边带权,试求一个排列 \(P\) ,使下式的值最大 \[\sum_{i=1}^{n-1} maxflow(P_i, P_{i+1}) \] ...

  4. crmsh语法

    .查看配置信息 crm(live)# configure crm(live)configure# show node node1 node node2 property cib-bootstrap-o ...

  5. 【Python】print 方法的参数

    当在IDEL或者命令行中执行 help(print) 命令时,就可以看到 print 方法的详细说明: print(value, ..., sep=' ', end='\n', file=sys.st ...

  6. leetcode_day01

    任务一:有效的括号 题目链接:https://leetcode-cn.com/problems/valid-parentheses/ 自己的答案: class Solution: def isVali ...

  7. hdu 1574 RP问题 01背包的变形

    hdu 1574 RP问题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1574 分析:01背包的变形. RP可能为负,所以这里分两种情况处理一下就好 ...

  8. vue前端开发那些事(1)

    如上图所示,用vue开发一个小型网站所涉及到的知识点.这只是前端部分已经这么多了.接下来我分解开来说. 1.Node 当我们开发vue项目的时候,首先要安装Node.js,那么我们即使当时不理解为什么 ...

  9. CSS实现放大镜/狙击镜效果

    图片放大,这是一个比较容易的效果了.当然,今天说的可不是简简单单的在一个框里放大,而是一个圆.就像放大镜或是狙击镜那样,只有圆圈里的放大,圈外的当然还是原来的图片.这是不是很不可思议? 当然不是.做过 ...

  10. 配置sanmba

    samba是Linux系统上的一种文件共享协议,可以实现Windows系统访问Linux系统上的共享资源,现在介绍一下如何在Ubuntu 14.04上安装和配置samba 工具/原料   Ubuntu ...