CF1042E Vasya and Magic Matrix
感觉不会期望。
首先把所有格子按照权值从小到大排一下序,这样一共有$n * m$个元素,每个元素有三个属性$x, y, val$。
下文中的下标均为排序后的下标。
这样子我们就可以推出公式:
$f_i = \frac{1}{k}\sum_{j = 1}^{k}(f_j + (x_j - x_i)^2 + (y_j - y_i)^2)$ $($保证$val_j < val_i$并且这样的元素一共有$k$个$)$。
暴力转移是$n^2$的,但是我们可以把这个式子拆开:
$f_i = \frac{1}{k}\sum_{j = 1}^{k}f_j + x_i^2 + y_i^2 + \frac{1}{k}\sum_{j = 1}^{k}x_j^2 + \frac{1}{k}\sum_{j = 1}^{k}y_j^2 - \frac{2x_i}{k}\sum_{j = 1}^{k}x_j - \frac{2y_i}{k}\sum_{j = 1}^{k}y_j$
维护$\sum_{i = 1}^{k}x_i^2$、$\sum_{i = 1}^{k}y_i^2$、$\sum_{i = 1}^{k}y_i$、$\sum_{i = 1}^{k}x_i$、$\sum_{i = 1}^{k}f_i$五个前缀和就可以$O(n)$转移了。
要注意$val_i$可能为$0$。
加上算逆元的时间一共是$O(nmlogP)$。
Code:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll; const int N = ;
const int M = 1e6 + ;
const ll P = 998244353LL; int n, m, tot = ;
ll a[N][N], f[M]; struct Item {
ll x, y, val;
} b[M]; bool cmp(const Item &u, const Item &v) {
return u.val < v.val;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for(; y > ; y >>= ) {
if(y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void up(ll &x, ll y) {
x = ((x + y) % P + P) % P;
} template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} int main() {
read(n), read(m);
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++) {
read(a[i][j]);
b[++tot].x = 1LL * i, b[tot].y = 1LL * j, b[tot].val = a[i][j];
} int stx, sty, pos; read(stx), read(sty);
sort(b + , b + + tot, cmp);
for(int i = ; i <= tot; i++)
if(b[i].x == stx && b[i].y == sty) {
pos = i;
break;
} ll sumx = 0LL, sumy = 0LL, sumx2 = 0LL, sumy2 = 0LL, sumf = 0LL; int k = ;
for(int i = ; i <= pos; i++) {
for(; b[k].val < b[i].val && k <= pos; k++) {
up(sumx, b[k].x), up(sumy, b[k].y);
up(sumx2, b[k].x * b[k].x % P), up(sumy2, b[k].y * b[k].y % P);
up(sumf, f[k]);
}
if(k <= ) continue;
ll invK = fpow(k - , P - );
up(f[i], invK * sumf % P);
up(f[i], b[i].x * b[i].x % P), up(f[i], b[i].y * b[i].y % P);
up(f[i], invK * sumx2 % P), up(f[i], invK * sumy2 % P);
up(f[i], -2LL * b[i].x % P * invK % P * sumx % P), up(f[i], -2LL * b[i].y % P * invK % P * sumy % P);
} printf("%lld\n", f[pos]);
return ;
}
提醒自己:写快速幂不要把函数名写成$pow$,因为这样WA了很多次。
CF1042E Vasya and Magic Matrix的更多相关文章
- CF1042E Vasya and Magic Matrix 题解
题目链接 思路分析 看到题目中 \(n,m \leq 1000\) ,故直接考虑 \(O(n^2)\) 级别做法. 我们先把所有的点按照 \(val\) 值从小到大排序,这样的话二维问题变成序列问题. ...
- CF 1042 E. Vasya and Magic Matrix
E. Vasya and Magic Matrix http://codeforces.com/contest/1042/problem/E 题意: 一个n*m的矩阵,每个位置有一个元素,给定一个起点 ...
- Vasya and Magic Matrix CodeForces - 1042E (概率dp)
大意:给定n*m矩阵, 初始位置(r,c), 每一步随机移动到权值小于当前点的位置, 得分为移动距离的平方, 求得分期望. 直接暴力dp的话复杂度是O(n^4), 把距离平方拆开化简一下, 可以O(n ...
- Educational Codeforces Round 9 F. Magic Matrix 最小生成树
F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...
- Educational Codeforces Round 48 (Rated for Div. 2) D 1016D Vasya And The Matrix (构造)
D. Vasya And The Matrix time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- codeforces1016 D. Vasya And The Matrix(思维+神奇构造)
D. Vasya And The Matrix time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 632F Magic Matrix(bitset)
题目链接 Magic Matrix 考虑第三个条件,如果不符合的话说明$a[i][k] < a[i][j]$ 或 $a[j][k] < a[i][j]$ 于是我们把所有的$(a[i][j ...
- D. Vasya And The Matrix(Educational Codeforces Round 48)
D. Vasya And The Matrix time limit per test2 seconds memory limit per test256 megabytes inputstandar ...
- Vasya And The Matrix CodeForces - 1016D (思维+构造)
Now Vasya is taking an exam in mathematics. In order to get a good mark, Vasya needs to guess the ma ...
随机推荐
- nginx日志配置,以及日志轮询
一.为nginx配置错误日志 Nginx错误日志是调试nginx的重要手段,属于核心功能模块的参数(ngx_core_module)该参数名字为err_log,是放在Main区块中全局配置 err_l ...
- Android系统OTA升级包制作【转】
本文转载自:http://blog.csdn.net/dingfengnupt88/article/details/52882788 Android系统升级分为整包升级和差分包升级,整包升级就是将系统 ...
- linux 各个文件系统之间的关系
linux 系统的各个文件系统是内置于内核中的,用vfs屏蔽了各个文件系统对于文件操作的差异,用户进程是通过系统调用来操作文件系统中的文件的.
- 创建 CSS3 下拉菜单
1. [图片] 菜单效果 2. [代码]menu.html <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ...
- meta 标签代码解决IE兼容问题,IE6,IE7,IE8,IE9,IE10(包括360的兼容模式)
最近做了一个项目,客户反映,在360下布局错位,远程调试了一下,发现客户使用的是360的兼容模式,然而我在自己的电脑上测试的时候是正常的(兼容模式也正常):简单研究了一下360的兼容模式,在360的兼 ...
- Android 基础-2.0 拔打电话号码
1.添加权限 在AndroidManifest.xml 添加打电话权限 <uses-permission android:name="android.permission.CALL_P ...
- 9 python 数据类型—字典
字典是python中唯一的映射类型,采用键值对(key-value)的形式存储数据.python对key进行哈希函数运算,根据计算的结果决定value的存储地址,所以字典是无序存储的,且key必须是可 ...
- php断点续传
http://www.cnblogs.com/xproer/archive/2012/10/26/2741264.html
- APIO2017商旅
传送门(PDF) 题目大意:有$N$个点,$M$条有向边,$K$种物品,在不同的点可以用不同的价格买入或卖出某一种商品. 任意时刻至多持有一种物品,不能在同一个点先买再卖,求收益与长度之比最大的点数$ ...
- URI is not registered (Settings | Languages & Frameworks | Schemas and DTDs)
解决:鼠标悬于上方Alt + Enter 选择Ignore