感觉不会期望。

首先把所有格子按照权值从小到大排一下序,这样一共有$n * m$个元素,每个元素有三个属性$x, y, val$。

下文中的下标均为排序后的下标。

这样子我们就可以推出公式:

    $f_i = \frac{1}{k}\sum_{j = 1}^{k}(f_j + (x_j - x_i)^2 + (y_j - y_i)^2)$    $($保证$val_j < val_i$并且这样的元素一共有$k$个$)$。

暴力转移是$n^2$的,但是我们可以把这个式子拆开:

    $f_i = \frac{1}{k}\sum_{j = 1}^{k}f_j + x_i^2 + y_i^2 + \frac{1}{k}\sum_{j = 1}^{k}x_j^2 + \frac{1}{k}\sum_{j = 1}^{k}y_j^2 - \frac{2x_i}{k}\sum_{j = 1}^{k}x_j - \frac{2y_i}{k}\sum_{j = 1}^{k}y_j$

维护$\sum_{i = 1}^{k}x_i^2$、$\sum_{i = 1}^{k}y_i^2$、$\sum_{i = 1}^{k}y_i$、$\sum_{i = 1}^{k}x_i$、$\sum_{i = 1}^{k}f_i$五个前缀和就可以$O(n)$转移了。

要注意$val_i$可能为$0$。

加上算逆元的时间一共是$O(nmlogP)$。

Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll; const int N = ;
const int M = 1e6 + ;
const ll P = 998244353LL; int n, m, tot = ;
ll a[N][N], f[M]; struct Item {
ll x, y, val;
} b[M]; bool cmp(const Item &u, const Item &v) {
return u.val < v.val;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for(; y > ; y >>= ) {
if(y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void up(ll &x, ll y) {
x = ((x + y) % P + P) % P;
} template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} int main() {
read(n), read(m);
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++) {
read(a[i][j]);
b[++tot].x = 1LL * i, b[tot].y = 1LL * j, b[tot].val = a[i][j];
} int stx, sty, pos; read(stx), read(sty);
sort(b + , b + + tot, cmp);
for(int i = ; i <= tot; i++)
if(b[i].x == stx && b[i].y == sty) {
pos = i;
break;
} ll sumx = 0LL, sumy = 0LL, sumx2 = 0LL, sumy2 = 0LL, sumf = 0LL; int k = ;
for(int i = ; i <= pos; i++) {
for(; b[k].val < b[i].val && k <= pos; k++) {
up(sumx, b[k].x), up(sumy, b[k].y);
up(sumx2, b[k].x * b[k].x % P), up(sumy2, b[k].y * b[k].y % P);
up(sumf, f[k]);
}
if(k <= ) continue;
ll invK = fpow(k - , P - );
up(f[i], invK * sumf % P);
up(f[i], b[i].x * b[i].x % P), up(f[i], b[i].y * b[i].y % P);
up(f[i], invK * sumx2 % P), up(f[i], invK * sumy2 % P);
up(f[i], -2LL * b[i].x % P * invK % P * sumx % P), up(f[i], -2LL * b[i].y % P * invK % P * sumy % P);
} printf("%lld\n", f[pos]);
return ;
}

提醒自己:写快速幂不要把函数名写成$pow$,因为这样WA了很多次。

CF1042E Vasya and Magic Matrix的更多相关文章

  1. CF1042E Vasya and Magic Matrix 题解

    题目链接 思路分析 看到题目中 \(n,m \leq 1000\) ,故直接考虑 \(O(n^2)\) 级别做法. 我们先把所有的点按照 \(val\) 值从小到大排序,这样的话二维问题变成序列问题. ...

  2. CF 1042 E. Vasya and Magic Matrix

    E. Vasya and Magic Matrix http://codeforces.com/contest/1042/problem/E 题意: 一个n*m的矩阵,每个位置有一个元素,给定一个起点 ...

  3. Vasya and Magic Matrix CodeForces - 1042E (概率dp)

    大意:给定n*m矩阵, 初始位置(r,c), 每一步随机移动到权值小于当前点的位置, 得分为移动距离的平方, 求得分期望. 直接暴力dp的话复杂度是O(n^4), 把距离平方拆开化简一下, 可以O(n ...

  4. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

  5. Educational Codeforces Round 48 (Rated for Div. 2) D 1016D Vasya And The Matrix (构造)

    D. Vasya And The Matrix time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. codeforces1016 D. Vasya And The Matrix(思维+神奇构造)

    D. Vasya And The Matrix time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces 632F Magic Matrix(bitset)

    题目链接  Magic Matrix 考虑第三个条件,如果不符合的话说明$a[i][k] < a[i][j]$ 或 $a[j][k] < a[i][j]$ 于是我们把所有的$(a[i][j ...

  8. D. Vasya And The Matrix(Educational Codeforces Round 48)

    D. Vasya And The Matrix time limit per test2 seconds memory limit per test256 megabytes inputstandar ...

  9. Vasya And The Matrix CodeForces - 1016D (思维+构造)

    Now Vasya is taking an exam in mathematics. In order to get a good mark, Vasya needs to guess the ma ...

随机推荐

  1. web框架详解之tornado 二 cookie

    一.tornado之cookie一 目录: <!DOCTYPE html> <html lang="en"> <head> <meta c ...

  2. 最短路N题Tram SPFA

     #include <algorithm>#include <queue>#include <cstdio>#include <cstdlib>#inc ...

  3. UOJ71 【WC2015】k小割

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. jQuery-选择器(2)

    jQuery选择器(2) 继续学习jquery选择器,感受它对于操作DOM节点的方便. [属性筛选选择器]属性选择器可以让你基于属性来定位一个元素.可以只指定该元素的某属性,这样所有使用该属性而不管它 ...

  5. 机器学习(十七)— SVD奇异值分解

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  6. priority_queue用法(转载)

    关于priority_queue 1,关于STL中的priority_queue:确定用top()查看顶部元素时,该元素是具有最高优先级的一个元素. 调用pop()删除之后,将促使下一个元素进入该位置 ...

  7. 重拾安卓_01_安卓开发环境搭建(android studio)

    一.下载安装SDK 参考:搭建Android开发环境——Eclipse  的安装SDK部分 二.安装android studio 参考: Android Studio 入门级教程(一) 三.andro ...

  8. Java企业微信开发_13_异常:com.qq.weixin.mp.aes.AesException: 解密后得到的buffer非法

    一.异常信息 方法:POST@ echostr是否存在 :false java.lang.IllegalArgumentException: 20 > -367029533 at java.ut ...

  9. AAC头部格式

    一共有2种AAC头格式,一种是StreamMuxConfig,另一种是AudioSpecificConfig 1.AudioSpecificConfig 读写header的代码参考    ffmpeg ...

  10. HNOI2004宠物收养所(splay维护二叉搜索树模板题)

    描述 最近,阿Q开了一间宠物收养所.收养所提供两种服务:收养被主人遗弃的宠物和让新的主人领养这些宠物.每个领养者都希望领养到自己满意的宠物,阿Q根据领养者的要求通过他自己发明的一个特殊的公式,得出该领 ...