传送门

分析

对这个$f(k)$整除分块,用杜教筛搞出$\mu$的部分然后另一部分快速幂即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int N = 5e6;
const int mod = 1e9+;
int p[N+],mu[N+];
bool is[N+];
map<int,int>MU;
inline void init(){
int i,j,cnt=;
mu[]=;
for(i=;i<=N;i++){
if(!is[i])p[++cnt]=i,mu[i]=-;
for(j=;j<=cnt,i*p[j]<=N;j++){
is[p[j]*i]=;
if(i%p[j]==){
mu[p[j]*i]=;
break;
}
mu[p[j]*i]=-mu[i];
}
}
for(i=;i<=N;i++)mu[i]=(mu[i]+mu[i-]+mod)%mod;
}
inline int go(int x){
if(x<=N)return mu[x];
if(MU[x])return MU[x];
int res=,le=,ri;
for(;le<=x;le=ri+){
ri=x/(x/le);
res=(res-(long long)(ri-le+)*go(x/le)%mod+mod)%mod;
}
return MU[x]=res;
}
inline int pw(int x,int p){
int res=;
while(p){
if(p&)res=(long long)res*x%mod;
x=(long long)x*x%mod;
p>>=;
}
return res;
}
int main(){
int n,m,p,k,L,R,le=,ri,Ans=;
scanf("%d%d%d%d",&p,&k,&L,&R);
n=R/k,m=(L-)/k;
init();
for(;le<=n;le=ri+){
if(m/le)ri=min(n/(n/le),m/(m/le));
else ri=n/(n/le);
Ans=(Ans+(long long)(go(ri)-go(le-)+mod)%mod*pw(n/le-m/le,p)%mod)%mod;
}
printf("%d\n",Ans);
return ;
}

p3172 选数的更多相关文章

  1. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  2. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. CODE VS1008选数

    #include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #inclu ...

  4. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  5. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  6. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)

    [BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...

  9. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

随机推荐

  1. 【剑指offer】以o(1)复杂度删除啊链表的节点,C++实现(链表)

    0.简介       本文是牛客网<剑指offer>刷题笔记. 1.题目       在O(1)时间内删除链表节点. 2.思路         前提条件:删除的节点在链表上:边界条件:链表 ...

  2. Win 7升级记

    微软要抛弃它的XP了,我也应该提前把家里的PC升级成Win7,省得将来麻烦事多. 其实升级它也很简单,这全要归功于网络上的能人.我首先在网络上下载好一个操作系统DEEP_Ghost_Win7_Sp1_ ...

  3. Git学习原版手稿

    手稿诞生记        Git学习的时候难免会有遗忘然后往复学习查看的过程,所以就形成了这个学习的手稿,记录了Git使用过程中的大部分命令,今天在清理的时候偶然看到了这些记录,而且最近也在写Git的 ...

  4. 数字排列(n,m)(搜索与回溯)

    题目描述: 设有n个整数的集合{1,2,…,n},从中取出任意r个数进行排列(r<n),试列出所有的排列. 代码如下: #include<iostream>#include<c ...

  5. C++对C语言的拓展(1)—— 引用

    1.变量名 变量名实质上是一段连续存储空间的别名,是一个标号(门牌号): 通过变量来申请并命名内存空间: 通过变量的名字可以使用内存空间. 2.引用的概念 变量名,本身是一段内存的引用,即别名(ali ...

  6. 微信小程序switch组件尺寸控制

    1.修改switch组件的属性值 /* switch */ .wx-switch-input{ width: 82rpx!important; height: 40rpx!important; } / ...

  7. AngularJs出现错误Error: [ng:areq]

    1.没有对应的控制器 2.有控制器但是路径没有配对

  8. k2 4.6.9安装记录-够复杂了

    首先需要准备一台Windows server 2008R2 系统.可以从微软官方下载. 下载地址: http://www.microsoft.com/zh-cn/download/confirmati ...

  9. js中call apply方法的使用介绍

    js call call 方法 请参阅 应用于:Function 对象 要求 版本 5.5 调用一个对象的一个方法,以另一个对象替换当前对象. call([thisObj[,arg1[, arg2[, ...

  10. 解决方案: the selected file is a solution file but was created by a newer version of this application and cannot be opened

    最近在用IronGithub访问Github api时遇到一个问题: the selected file is a solution file but was created by a newer v ...