传送门

分析

对这个$f(k)$整除分块,用杜教筛搞出$\mu$的部分然后另一部分快速幂即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int N = 5e6;
const int mod = 1e9+;
int p[N+],mu[N+];
bool is[N+];
map<int,int>MU;
inline void init(){
int i,j,cnt=;
mu[]=;
for(i=;i<=N;i++){
if(!is[i])p[++cnt]=i,mu[i]=-;
for(j=;j<=cnt,i*p[j]<=N;j++){
is[p[j]*i]=;
if(i%p[j]==){
mu[p[j]*i]=;
break;
}
mu[p[j]*i]=-mu[i];
}
}
for(i=;i<=N;i++)mu[i]=(mu[i]+mu[i-]+mod)%mod;
}
inline int go(int x){
if(x<=N)return mu[x];
if(MU[x])return MU[x];
int res=,le=,ri;
for(;le<=x;le=ri+){
ri=x/(x/le);
res=(res-(long long)(ri-le+)*go(x/le)%mod+mod)%mod;
}
return MU[x]=res;
}
inline int pw(int x,int p){
int res=;
while(p){
if(p&)res=(long long)res*x%mod;
x=(long long)x*x%mod;
p>>=;
}
return res;
}
int main(){
int n,m,p,k,L,R,le=,ri,Ans=;
scanf("%d%d%d%d",&p,&k,&L,&R);
n=R/k,m=(L-)/k;
init();
for(;le<=n;le=ri+){
if(m/le)ri=min(n/(n/le),m/(m/le));
else ri=n/(n/le);
Ans=(Ans+(long long)(go(ri)-go(le-)+mod)%mod*pw(n/le-m/le,p)%mod)%mod;
}
printf("%d\n",Ans);
return ;
}

p3172 选数的更多相关文章

  1. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  2. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. CODE VS1008选数

    #include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #inclu ...

  4. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  5. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  6. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)

    [BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...

  9. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

随机推荐

  1. 4.MySQL优化---多表查询优化

     整理自互联网 一.多表查询连接的选择: 相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了.这图只是让大家回忆一下,各种连接查询. 然后要告诉大家的是,需要 ...

  2. 图片上传-本地图片转base64+ie8支持+本地预览支持

    最近项目由于flash同学没在了,图片上传只能前端重新做,后台希望用base64数据上传,复用之前接口 问题来了, 1.ie8 不支持canvas转base64 2.本地预览 base64数据,ie8 ...

  3. LeetCode 293. Flip Game

    原题链接在这里:https://leetcode.com/problems/flip-game/description/ 题目: You are playing the following Flip ...

  4. UML类图与类的关系详解【转】

    在画类图的时候,理清类和类之间的关系是重点. 类的关系有泛化(Generalization).实现(Realization).依赖(Dependency)和关联(Association).其中关联又分 ...

  5. angular 的杂碎报错小知识

    1:[ng:areq] Angular出现这种错误的原因,是由于没有在页面中使用模块引入controller导致的 所以 请确保你定义了这个controller后也引用了它. 2:Failed to ...

  6. bzoj 3328 PYXFIB —— 单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演,主要用到了 \( [k|n] = \frac{1}{k} \sum\lim ...

  7. CentOS6.5下安装mongodb

    MongoDB是目前最常用的NoSQL-非关系型数据库. 本文将介绍在CentOS下如何通过yum安装MongoDB. 1.首先在CentOS6.5下,编辑Mongo的yum源: 在/etc/yum. ...

  8. [转]java 中的序列化是什么意思?有什么好处?

    1.序列化是干什么的? 简单说就是为了保存在内存中的各种对象的状态,并且可以把保存的对象状态再读出来.虽然你可以用你自己的各种各样的方法来保存Object States,但是Java给你提供一种应该比 ...

  9. MongoDB优化之一:常见优化方法

    常用性能优化方案 创建索引 限定返回结果数 只查询使用到的字段 采用capped collection 采用Server Side Code Execution 使用Hint,强制使用索引 Hint ...

  10. JS:Window

    ylbtech-JS:Window 1.返回顶部 1.happy.js ; (function () { var happyUi = { initHappy: function (type) { ut ...