洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Queries
然后只要在这上面加个容斥就好了,答案就是$ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)$
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=5e5+;
int p[N],m,vis[N],mu[N],sum[N],a,b,c,d,k;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=n;++i) sum[i]=sum[i-]+mu[i];
}
ll calc(int a,int b){
int lim=min(a,b);ll res=;
for(int l=,r;l<=lim;l=r+){
r=min(a/(a/l),b/(b/l));
res+=1ll*(a/(l*k))*(b/(l*k))*(sum[r]-sum[l-]);
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();init();
while(T--){
a=read(),b=read(),c=read(),d=read(),k=read();
printf("%lld\n",calc(b,d)-calc(b,c-)-calc(a-,d)+calc(a-,c-));
}
return ;
}
洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)的更多相关文章
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
随机推荐
- Java for LeetCode 115 Distinct Subsequences【HARD】
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- Swift 烧脑体操(四) - map 和 flatMap
前言 Swift 其实比 Objective-C 复杂很多,相对于出生于上世纪 80 年代的 Objective-C 来说,Swift 融入了大量新特性.这也使得我们学习掌握这门语言变得相对来说更加困 ...
- Python环境问题
http://installion.co.uk/ubuntu/precise/main/p/python3.2/uninstall/index.html
- debian支持的系统架构介绍
debian系统支持类型有armel.armhf.i386.amd64.mips.mipsel, powerpc.sparc.s390.s390x等. 详细对比文章见https://www.debia ...
- access 驱动在win64位出现问题
如果是调试的话,将应用程序池的 启动win32应用程序池 为 true
- 基于KD-Tree的最近邻搜索
目标:查询目标点附近的10个最近邻邻居. load fisheriris x = meas(:,:); figure(); g1=gscatter(x(:,),x(:,),species); %spe ...
- listen 56
Kettles Stop Whistling in the Dark British physicist Lord Rayleigh is best known for his discovery o ...
- PHP中读写文件
在PHP中读写文件,可以用到一下内置函数: 1.fopen(创建文件和打开文件) 语法: 复制代码代码如下:fopen(filename,mode) filename,规定要打开的文件.mode,打开 ...
- linux 进程学习笔记-named pipe (FIFO)命名管道
与“无名管道”不同的是,FIFO拥有一个名称来标志它,所谓的名称实际上就是一个路径,比如“/tmp/my_fifo”,其对应到磁盘上的一个管道文件,如果我们用file命令来查看其文件类型的话,会得到如 ...
- 使用msiexec提取msi包里的文件
核心:如需把d盘下abc.msi文件解包到目录d:\abc,操作如下:打开命令提示符,输入msiexec /a "d:\abc.msi" /qb TARGETDIR="D ...