BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
Description
In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)
Input
Output
Sample Input
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7
Sample Output
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 100500
int head[N],to[N],nxt[N],cnt,siz[N],bel[N],tot,dfn[N],low[N],scc,S[N],ins[N],n,m,xx[N],yy[N],Q[N],in[N],l,r;
int f[N],g[N],ans;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void dfs(int x) {
int i; dfn[x]=low[x]=++tot; ins[x]=1; S[++S[0]]=x;
for(i=head[x];i;i=nxt[i]) {
if(!dfn[to[i]]) {
dfs(to[i]);
low[x]=min(low[x],low[to[i]]);
}else if(ins[to[i]]) {
low[x]=min(low[x],dfn[to[i]]);
}
}
if(dfn[x]==low[x]) {
int t=S[S[0]--];
scc++; siz[scc]++; bel[t]=scc; ins[t]=0;
while(x!=t) {
t=S[S[0]--]; siz[scc]++; bel[t]=scc; ins[t]=0;
}
}
}
int main() {
// freopen("wander.in","r",stdin);
// freopen("wander.out","w",stdout);
scanf("%d%d",&n,&m);
if(n==1) {
puts("1"); return 0;
}
int i,x,y;
for(i=1;i<=m;i++) {
scanf("%d%d",&x,&y); add(x,y); xx[i]=x; yy[i]=y;
}
for(i=1;i<=n;i++) if(!dfn[i]) dfs(i);
memset(head,0,sizeof(head)); cnt=0; tot=0;
for(i=1;i<=m;i++) {
x=bel[xx[i]]; y=bel[yy[i]];
if(x!=y) add(x,y),in[y]++,xx[++tot]=x,yy[tot]=y;
}
for(i=1;i<=scc;i++) f[i]=g[i]=-1000000;
int S=bel[1];f[S]=0; g[S]=0;
for(i=1;i<=scc;i++) if(!in[i]) Q[r++]=i;
while(l<r) {
x=Q[l++]; f[x]+=siz[x];
for(i=head[x];i;i=nxt[i]) {
f[to[i]]=max(f[to[i]],f[x]);
if((--in[to[i]])==0) Q[r++]=to[i];
}
}
memset(head,0,sizeof(head)); cnt=0; memset(in,0,sizeof(in));
for(i=1;i<=tot;i++) {
add(yy[i],xx[i]); in[xx[i]]++;
}
l=r=0;
for(i=1;i<=scc;i++) if(!in[i]) Q[r++]=i;
while(l<r) {
x=Q[l++]; g[x]+=siz[x];
for(i=head[x];i;i=nxt[i]) {
g[to[i]]=max(g[to[i]],g[x]);
if((--in[to[i]])==0) Q[r++]=to[i];
}
}
for(i=1;i<=tot;i++) {
ans=max(ans,max(f[xx[i]]+g[yy[i]],f[yy[i]]+g[xx[i]]));
}
printf("%d\n",ans-siz[S]);
}
/*
7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7
*/ /*
5 8
3 2
4 3
3 5
4 1
2 3
1 3
4 2
1 4
*/
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP的更多相关文章
- BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)
分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...
- BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset
BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i ...
- BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*
BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...
- poj 2762(强连通分量+拓扑排序)
题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...
- BZOJ1924:[SDOI2010]所驼门王的宝藏(强连通分量,拓扑排序)
Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...
- 2019ICPC(银川) - Delivery Route(强连通分量 + 拓扑排序 + dijkstra)
Delivery Route 题目:有n个派送点,x条双向边,y条单向边,出发点是s,双向边的权值均为正,单向边的权值可以为负数,对于单向边给出了一个限制:如果u->v成立,则v->u一定 ...
- CDOJ 图论专题 A.不是图论 强连通分量+拓扑排序 经典
题目链接 在其中纠错第一次wa代码 #include <cstdio> #include <cstring> #include <cstdlib> #includ ...
- POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)
职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...
- [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp
[Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...
随机推荐
- Git 的使用Git Bash和Git GUI
使用Github也有一年的时间了,之前一直都是使用的Github客户端,对提交,更新,克隆,合并,分支有一定的了解和实践.一直都想试试命令行的形式,但是感觉可能桌面版的方便就没有做. 可是Github ...
- C语言-回溯例3
排列问题 1.实现排列A(n,m)对指定的正整数m,n(约定1<m<=n),具体实现排列A(n,m).2. 回溯算法设计设置一维数组a,a(i)(i=1,2,…,m)在1—n中取值.首先从 ...
- mysql 清空或删除表数据后,控制表自增列值的方法
http://blog.sina.com.cn/s/blog_68431a3b0100y04v.html 方法1: truncate table 你的表名 //这样不但将数据全部删除,而且重新定位自增 ...
- DM8168 unrecoverable error: OMX_ErrorBadParameter (0x80001005) [resolved]
DM8168 custom board 成功启动系统之后想先測一下8168编解码功能,把开发包里的examples跑一遍.启动完毕后.连上HDMI显示,在starting Matrix GUI app ...
- Intel® RAID Software Users Guide
Intel® RAID Software Users Guide: Intel ® Embedded Server RAID Technology 2 Intel ® IT/IR RAID I ...
- 实习日记)select option 选择不同的option时, 页面发生不同的变化
怎么在下拉框的选择不同的option时, 页面发生响应的变化 因为option是没有点击事件什么的, 只有select才有, 所以不能通过option的点击事件来完成, 所以开始的尝试都失败了(之前 ...
- 记录-外挂recovery的制作(魅蓝note)
安卓的开源使其具有很强的可定制性,对于用户来说很具有可玩性.玩机一般来说就是解锁BootLoader刷入第三方recovery,利用第三方recovery刷第三方ROM,刷supersu获取root权 ...
- Selenium学习(一)环境搭建
一.安装selenium有两种方式: 1.pip install -U selenium(网络条件好) 2.下载selenium安装包,通过python setup.py install(压缩包)或p ...
- 怎么理解RSA算法
原文地址:http://www.ittenyear.com/414/rsa/ 怎么理解RSA算法 能够把非对称加密算法里的公钥想象成一个带锁的箱子,把私钥想象成一把钥匙 能够把对称加密算法里的密钥想象 ...
- quick-cocos2d-x教程3:程序框架内文件夹分析之docs文件夹
如今我们分析框架中的docs文件夹.看看这个文档文件夹中,究竟放了那些对我们实用的东西. docs文件夹分析 UPGRADE_TO_2_2_3.md 就是讲升级的变化.详细说明:quick-cocos ...