题面:http://uoj.ac/problem/300

一道大水题,然而我并不知道$lucas$定理的推论。。

$\binom{n}{m}$为奇数的充要条件是$n&m=n$。那么我们对于每个数,直接枚举子集转移就行了,复杂度是$O(3^{18})$,不会$T$。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (1000000007)
#define inf (1<<30)
#define N (300010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; int f[N],a[N],b[N],n,ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void work(){
n=gi(); for (RG int i=;i<=n;++i) a[i]=gi(),b[a[i]]=i;
for (RG int i=;i<=n;++i){
ans+=(f[i]++); if (ans>=rhl) ans-=rhl;
for (RG int s=a[i];s;s=(s-)&a[i])
if (b[s]>i){ f[b[s]]+=f[i]; if (f[b[s]]>=rhl) f[b[s]]-=rhl; }
}
printf("%d\n",ans); return;
} int main(){
File("gift");
work();
return ;
}

uoj#300.【CTSC2017】吉夫特的更多相关文章

  1. uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划

    题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...

  2. 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

    [BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...

  3. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

  4. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  5. bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特

    http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...

  6. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  7. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

  8. [CTSC2017]吉夫特

    Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...

  9. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

随机推荐

  1. Working Experience - WPF XAML 报错 - 命名空间中不存在该名称

    问题 编辑 xaml 时,VS 提示一个存在的类不存在(如:命名空间"xxx"中不存在"xxx"名称). 运行环境 Windows 版本:Window 10 V ...

  2. SmartSql使用教程(2)——使用动态代理实现CURD

    一.引言 接着上一篇的教程,本章我们继续讲SmartSql.今天的主题是动态仓储. 老规矩,先上一个项目结构 从第二章开始.我们将原来的单一项目做了一个分离.方便之后的更新. 在这个结构中.原本上一章 ...

  3. ue4 c++ anim notify

    http://blog.csdn.net/or_7r_ccl/article/details/54564962 直接在sequence or montage中new个Event 然后在graph中接收 ...

  4. Node.js crypto加密模块汇总

    第一篇文章:MD5 和 SHA家族 概述:使用Node实现较为简单的Hash加密算法,本篇实际上重不在Hash加密,主要的还是为了引出crypto加密的三种方式 第二篇文章:HMAC 概述:密钥相关的 ...

  5. axios发送两次请求原因及解决方法

    axios发送两次请求原因及解决方法 最近Vue项目中使用axios组件,在页面交互中发现axios会发送两次请求,一种请求方式为OPTIONS,另外一种为自己设置的. 如图: 什么是CORS通信? ...

  6. PHP闭包和匿名函数

    概念 闭包和匿名函数在PHP5.3.0中被引入. 闭包 闭包是指创建时封装周围环境的函数.即使闭包所在的环境不存在了,闭包中封装的状态依然存在.这个概念很难理解,不过没关系,继续看下去就会明白了. 匿 ...

  7. IOS 打包提示错误(ERROR ITMS-90125: ERROR ITMS-90087: ERROR ITMS-90209:)

    提示这种错误是集成环信造成的,解决方法看环信的官方文档: 集成动态库上传AppStore 由于 iOS 编译的特殊性,为了方便开发者使用,我们将 i386 x86_64 armv7 arm64 几个平 ...

  8. 前端CSS(2)

    前段基础css(2)   一.标准文档流 宏观的将,我们的web页面和ps等设计软件有本质的区别,web网页的制作,是个“流”,从上而下,像 “织毛衣”.而设计软件 ,想往哪里画东西,就去哪里画. 标 ...

  9. JS代码运行延迟

    还是上篇文章的项目. 现在是屏幕上需要显示九张图表,刚好用一张3X3的表格来显示.但是负责这块内容的同事始终没法让九张图表同时显示,有些图表的位置空了出来. 大家百思不得其解,最后只得求助技术经理. ...

  10. idea svn操作

    https://blog.csdn.net/bug_love/article/details/72875511