Python中Numpy ndarray的使用
本文主讲Python中Numpy数组的类型、全0全1数组的生成、随机数组、数组操作、矩阵的简单运算、矩阵的数学运算。
尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便。
定义数组
>>> import numpy as np
>>> m = np.array([[1,2,3], [2,3,4]]) #定义矩阵,int64
>>> m
array([[1, 2, 3],
[2, 3, 4]])
>>> m = np.array([[1,2,3], [2,3,4]], dtype=np.float) #定义矩阵,float64
>>> m
array([[1., 2., 3.],
[2., 3., 4.]])
>>> print(m.dtype) #数据类型
float64
>>> print(m.shape) #形状2行3列
(2, 3)
>>> print(m.ndim) #维数
2
>>> print(m.size) #元素个数
6
>>> print(type(m))
<class 'numpy.ndarray'>
还有一些特殊的方法可以定义矩阵
>>> m = np.zeros((2,2)) #全0
>>> m
array([[0., 0.],
[0., 0.]])
>>> print(type(m)) #也是ndarray类型
<class 'numpy.ndarray'>
>>> m = np.ones((2,2,3)) #全1
>>> m = np.full((3,4), 7) #全为7
>>> np.eye(3) #单位矩阵
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
>>> np.arange(20).reshape(4,5) #生成一个4行5列的数组
>>>
>>> np.random.random((2,3)) #[0,1)随机数
array([[0.51123127, 0.40852721, 0.26159126],
[0.42450279, 0.34763668, 0.06167501]])
>>> np.random.randint(1,10,(2,3)) #[1,10)随机整数的2行3列数组
array([[5, 4, 9],
[2, 5, 7]])
>>> np.random.randn(2,3) #正态随机分布
array([[-0.29538656, -0.50370707, -2.05627716],
[-1.50126655, 0.41884067, 0.67306605]])
>>> np.random.choice([10,20,30], (2,3)) #随机选择
array([[10, 20, 10],
[30, 10, 20]])
>>> np.random.beta(1,10,(2,3)) #贝塔分布
array([[0.01588963, 0.12635485, 0.22279098],
[0.08950147, 0.02244569, 0.00953366]])
操作数组
>>> from numpy import *
>>> a1=array([1,1,1]) #定义一个数组
>>> a2=array([2,2,2])
>>> a1+a2 #对于元素相加
array([3, 3, 3])
>>> a1*2 #乘一个数
array([2, 2, 2]) ##
>>> a1=np.array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1**3 #表示对数组中的每个数做立方
array([ 1, 8, 27]) ##取值,注意的是它是以0为开始坐标,不matlab不同
>>> a1[1]
2 ##定义多维数组
>>> a3=np.array([[1,2,3],[4,5,6]])
>>> a3
array([[1, 2, 3],
[4, 5, 6]])
>>> a3[0] #取出第一行的数据
array([1, 2, 3])
>>> a3[0,0] #第一行第一个数据
1
>>> a3[0][0] #也可用这种方式
1
>>> a3
array([[1, 2, 3],
[4, 5, 6]])
>>> a3.sum(axis=0) #按行相加,列不变
array([5, 7, 9])
>>> a3.sum(axis=1) #按列相加,行不变
array([ 6, 15])
矩阵的数学运算
关于方阵
>>> m = np.array([[1,2,3], [2,2,3], [2,3,4]]) #定义一个方阵
>>> m
array([[1, 2, 3],
[2, 2, 3],
[2, 3, 4]])
>>> print(np.linalg.det(m)) #求行列式
1.0
>>> print(np.linalg.inv(m)) #求逆
[[-1. 1. 0.]
[-2. -2. 3.]
[ 2. 1. -2.]]
>>> print(np.linalg.eig(m)) #特征值 特征向量
(array([ 7.66898014+0.j , -0.33449007+0.13605817j,
-0.33449007-0.13605817j]), array([[-0.47474371+0.j , -0.35654645+0.23768904j,
-0.35654645-0.23768904j],
[-0.53664812+0.j , 0.80607696+0.j ,
0.80607696-0.j ],
[-0.6975867 +0.j , -0.38956192-0.12190158j,
-0.38956192+0.12190158j]]))
>>> y = np.array([1,2,3])
>>> print(np.linalg.solve(m, y)) #解方程组
[ 1. 3. -2.]
矩阵乘法
矩阵乘:按照线性代数的乘法
>>> a = np.array([[1,2,3], [2,3,4]])
>>> b = np.array([[1,2], [3,4], [5,6]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> b
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.dot(a, b) #方法一
array([[22, 28],
[31, 40]])
>>> np.matmul(a,b) #方法二
array([[22, 28],
注:一维数组之间运算时,dot()表示的是内积。
点乘:对应位置相乘
>>> a = np.array([[1,2],[3,4]])
>>> b = np.array([[1,1],[2,2]])
>>> a
array([[1, 2],
[3, 4]])
>>> b
array([[1, 1],
[2, 2]])
>>> a * b #方法一
array([[1, 2],
[6, 8]])
>>> np.multiply(a, b) #方法二
array([[1, 2],
[6, 8]])
参考链接:
1、https://blog.csdn.net/chenhjie/article/details/73385353
2、https://blog.csdn.net/taoyanqi8932/article/details/52703686
3、https://blog.csdn.net/cqk0100/article/details/76221749
4、dot的使用 https://blog.csdn.net/u012149181/article/details/78913416
Python中Numpy ndarray的使用的更多相关文章
- python中numpy.ndarray.shape的用法
今天用到了shape,就顺便学习一下,这个shape的作用就是要把矩阵进行行列转换,请看下面的几个例子就明白了: >>> import numpy as np >>> ...
- 基于Python中numpy数组的合并实例讲解
基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...
- python中numpy矩阵运算操作大全(非常全)!
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...
- Python中Numpy及Matplotlib使用
Python中Numpy及Matplotlib使用 1. Jupyter Notebooks 作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!! 你可以 ...
- Python中NumPy基础使用
Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包. ndarray ndarray(以下简称数组)是numpy的数 ...
- 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...
- python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...
- Python中numpy的应用
#创建ndarray import numpy as np nd = np.array([2,4,6,'])#numpy中默认ndarray的所有元素的数据类型是相同,如果数据的类型不同,会统一为统一 ...
- Python中Numpy模块的使用
目录 NumPy ndarray对象 Numpy数据类型 Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运 ...
随机推荐
- 2016年第七届蓝桥杯国赛试题(JavaA组)
1.结果填空 (满分19分)2.结果填空 (满分35分)3.代码填空 (满分21分)4.程序设计(满分47分)5.程序设计(满分79分)6.程序设计(满分99分) 1.阶乘位数 9的阶乘等于:3628 ...
- SQL Server等待事件新解
资源等待类型 并行:CXPACKET Buffer:PAGEIOLATCH_X 非Buffer:LATCH_X I/O:ASYNC_IO_COMPITION:IO_COMPITION CPU:SOS_ ...
- jmeter压力测试报告
XXX压力测试报告 时间:2015-08-04 测试人员:xxx 目录 XXX压力测试报告... 1 一 测试 ...
- 网络编程demo之Udp和URL
首先是udp编程客户端发送消息给服务端,服务端接受然后打印到console控制台上 下面是一个有代表性的demo package com.henu.liulei; import java.io.IOE ...
- css清除浮动的方法总结
在各种浏览器中显示效果也有可能不相同,这样让清除浮动更难了,下面总结8种清除浮动的方法,测试已通过 ie chrome firefox opera,需要的朋友可以参考下 清除浮动是每一个 we ...
- selenium IDE插件下载
1.在https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/中下载Firefox的selenium-ide插件: 2.之后在Firef ...
- Java工程打包成jar可执行文件
将一个工程中的类打包成jar文件,步骤参考如下: 1.选择file -> project structure 2. 选择Arifacts->JAR->form modules wit ...
- vue中的导航守卫
官方文档地址: 导航守卫:https://router.vuejs.org/zh-cn/advanced/navigation-guards.html 好的,重点内容 router.beforeEac ...
- JSPs only permit GET POST or HEAD的解决方案(REST风格)
问题:原文链接 https://blog.csdn.net/tiberroot/article/details/76615727 看到很多人解决办法使用 @ResponseBody注解 这个意思是按照 ...
- bzoj3295: [Cqoi2011]动态逆序对 三维数点
为了便于考虑,把删除反序变为增加 于是就变成关于权值和位置和时间的三维数点 一波cdq一波树状数组教做人 (神TM需要longlong,80了一发) #include <bits/stdc++. ...