[HNOI2010] 平面图判定 planar
标签:二分图判定。
题解:
首先可以把题目中给你的那个环给画出来,这样就可以发现对于任意一个图来说,如果两条边要相交,就不能让他们相交,那么这两条边就要一条在里面一条在外面,如果把环画成一条链,那么就是一条在下面,一条在上面。于是我们想到对于边,O(n2)的枚举,判断是否相交即可,如果相交的话,就要连一条边,到时候判断这一个图(把原图边看成新图的点)是不是二分图即可,简单的二分图染色判定即可。
当然了O(n2)对于10000条边来说,因为有多组数据,会被卡掉,那么我们就要想办法,点这么少,边这么多,那么最多能有多少条边而且这个图是平面图呢?通过手玩找规律,先画出一条环,有n条边,然后这个环的一个点向非相邻的n-3个点连接n-3条边可以保证两两不相交,外面一侧如此,故如果边数m>n*3-6,就直接判断NO即可。保证了复杂度。
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=,MAXM=;
int Case,n,m;
int F[],T[],rk[MAXN],con[MAXM][MAXM],color[MAXM];
inline int gi(){int res; scanf("%d",&res); return res;}
bool judge(int S)
{
queue<int>Q;
color[S]=;
Q.push(S);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=;i<=m;i++)
if(con[u][i])
{
if(color[i]==-)
{
color[i]=!color[u];
Q.push(i);
}
else if(color[i]==color[u])
return ;
}
}
return ;
}
int main()
{
Case=gi();
while(Case--)
{
n=gi(); m=gi();
for(int i=;i<=m;i++)
{
F[i]=gi();
T[i]=gi();
}
for(int i=;i<=n;i++) rk[gi()]=i;
if(m>n*-){puts("NO");continue;}
memset(con,,sizeof con);
memset(color,-,sizeof color);
for(int i=,A,B,C,D;i<m;i++)
for(int j=i+;j<=m;j++)
{
A=rk[F[i]],B=rk[T[i]];
C=rk[F[j]],D=rk[T[j]];
if(A>B)swap(A,B);
if(C>D)swap(C,D);
if((B>C && B<D && C>A) || (D>A && D<B && A>C))
con[i][j]=con[j][i]=;
}
bool flag=;
for(int i=;i<=m;i++)
if(color[i]==- && !judge(i))
{ flag=; break; }
if(flag)puts("NO");
else puts("YES");
}
return ;
}
[HNOI2010] 平面图判定 planar的更多相关文章
- BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)
题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...
- bzoj1997 [HNOI2010]平面图判定Plana
bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...
- P3209 [HNOI2010]平面图判定
P3209 [HNOI2010]平面图判定 哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部 判断两条边在同一部分会相交,则这两条边必须分开 那么把边看作点连边,跑二分图染色就行 #incl ...
- Luogu P3209 [HNOI2010]平面图判定(2-SAT)
P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...
- [BZOJ1997][HNOI2010] 平面图判定
Description Input Output 是的..BZOJ样例都没给. 题解(from 出题人): 如果只考虑简单的平面图判定,这个问题是非常不好做的. 但是题目中有一个条件— ...
- HNOI2010 平面图判定(planar)
题目链接:戳我 我怎么知道平面图有这个性质?? 对于一个平面图,它的边数不超过点数的\(3n-6\) 所以可以直接把边数多的特判掉,剩下的图中边数和点数就是一个数量级的了. 因为这个图存在欧拉回路,所 ...
- [HNOI2010]平面图判定
Description: 若能将无向图 \(G=(V, E)\) 画在平面上使得任意两条无重合顶点的边不相交,则称 \(G\) 是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你 ...
- Luogu3209 HNOI2010 平面图判定 平面图、并查集
传送门 题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其 ...
- 洛谷P3209 [HNOI2010]平面图判定(2-SAT)
传送门 看到哈密顿回路就被吓傻了……结果没有好好考虑性质…… 首先,平面图有个性质:边数小于等于$3n-6$(我也不知道为啥),边数大于这个的直接pass 然后考虑原图,先把哈密顿回路单独摘出来,就是 ...
随机推荐
- 01-bilibilidemo配置
github-ijkplayer(bilibili)->cd 桌面位置 git clone https://github.com/Bilibili/ijkplayer.git ijkplayer ...
- call by value reference name
按名调用 Algol 按值调用 Java https://docs.python.org/3.6/faq/programming.html#how-do-i-write-a-function-with ...
- asp概述
asp的理解 今天才知道,Asp原来不是一种语言,也不是一种开发工具,而是一种技术框架, 主要功能是把脚本语言,HTML,组件和Web数据库访问功能有机的结合在一起, 形成一个能在服务器端运行的应用程 ...
- appium(1)-about appium
about appium Introduction to Appium Appium is an open-source tool for automating native, mobile web, ...
- Python序列——字符串
字符串 1 string模块预定义字符串 2 普通字符串与Unicode字符串 3 只适用于字符串的操作 4 原始字符串 5 Unicode字符串操作符 内建函数 1 标准类型函数与序列操作函数 2 ...
- user版本如何永久性开启adb 的root权限【转】
本文转载自:http://blog.csdn.net/o0daxu0o/article/details/52933926 [Solution]* adb 的root 权限是在system/core/a ...
- Loadrunner脚本自动关联和手动关联
关于Loadrunner关联一.什么时候需要关联 1.关联的含义 关联(correlation):在脚本回放过程中,客户端发出请求,通过关联函数所定义的左右边界值(也就是关联规则),在服 ...
- codeforces B. Roma and Changing Signs 解题报告
题目链接:http://codeforces.com/problemset/problem/262/B 题目意思:给出 n 个数和恰好一共要做的操作总数k.通过对n个数进行k次操作,每次操作可以把a[ ...
- Python: PS滤镜--径向模糊
本文用 Python 实现 PS 滤镜中的径向模糊特效,具体的算法原理和效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/details/3 ...
- 「LuoguP2252」 取石子游戏(威佐夫博弈
[P2252]取石子游戏 - 洛谷 题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以 ...