The Triangle
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 42547   Accepted: 25721

Description

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5 (Figure 1)

Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

Input

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

Output

Your program is to write to standard output. The highest sum is written as an integer.

Sample Input

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Output

30
#include"cstdio"
#include"cstring"
#include"algorithm"
using namespace std;
const int MAXN=;
const int INF=0x3fffffff;
int n;
int a[MAXN][MAXN];
int dp[MAXN][MAXN];
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
for(int j=;j<=i;j++) scanf("%d",&a[i][j]);
for(int i=n-;i>=;i--)
for(int j=;j<=i;j++)
dp[i][j]=max(dp[i+][j],dp[i+][j+])+a[i][j];
printf("%d\n",dp[][]);
return ;
}

POJ1163(基础线性DP)的更多相关文章

  1. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  2. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  3. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  4. 动态规划_线性dp

    https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序 ...

  5. POJ2779 线性DP 或 杨氏三角 和 钩子公式

    POJ2779 线性DP 或 杨氏三角 和 钩子公式 本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会 这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了PO ...

  6. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  7. Wooden Stricks——两个递增条件的线性DP

    题目 一堆n根木棍.每个棒的长度和重量是预先已知的.这些木棒将由木工机械一一加工.机器需要准备一些时间(称为准备时间)来准备处理木棍.设置时间与清洁操作以及更换机器中的工具和形状有关.木工机械的准备时 ...

  8. 线性DP 学习笔记

    前言:线性DP是DP中最基础的.趁着这次复习认真学一下,打好基础. ------------------ 一·几点建议 1.明确状态的定义 比如:$f[i]$的意义是已经处理了前$i个元素,还是处理第 ...

  9. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

随机推荐

  1. gulp在ionic中的使用

    简介 Gulp是一个基于流的自动化构建器. 安装 npm config set registry http://registry.npm.taobao.org ---最好用国内源 npm instal ...

  2. who命令

    who1.c #include <stdio.h>#include <utmp.h>#include <fcntl.h>#include <unistd.h& ...

  3. Mysql多线程性能测试工具sysbench 安装、使用和测试

    From:http://www.cnblogs.com/zhoujinyi/archive/2013/04/19/3029134.html 摘要:      sysbench是一个开源的.模块化的.跨 ...

  4. 1.excel如何让一列的数都乘以固定值

     让B列等于A列乘以39.37 1.我们先选中B列中要编辑的单元: 2.再在编辑栏中输入公式:=A2*39.37   (PS:*号即表示是×号) 3.公式输入后,按下快捷键:CTRL+回车:记住一定要 ...

  5. 第一个php小程序(学习)

    </pre><pre name="code" class="php"><? php $b=array("name&quo ...

  6. 升级svn 到1.7

    sudo yum update sudo yum groupinstall "Development tools" sudo yum groupinstall "Addi ...

  7. PHP收邮件receiveMail

    用PHP来发邮件,相信大家都不陌生,但读取收件箱的话,接触就少了,这次总结下自己的经验,希望能够帮助大家. 注意:1.PHP读取收件箱主要是利用imap扩展,所以在使用下面方法前,必须开启imap扩展 ...

  8. Darwin Streaming Server编译

    EasyDarwin是我们在Darwin Streaming Server的基础上进行开发和扩展的,Windows/Linux编译,包括64位编译补丁,我们都进行了整理和测试,后续还会不断进行迭代和扩 ...

  9. 理解 React,但不理解 Redux,该如何通俗易懂的理解 Redux?

    作者:Wang Namelos链接:https://www.zhihu.com/question/41312576/answer/90782136来源:知乎著作权归作者所有.商业转载请联系作者获得授权 ...

  10. iOS 第三方登录之 QQ登录

    一. 首先需要下载腾讯qq登录所需的库,下载地址是http://open.qq.com/ . 需要用到的有TencentOpenAPI.framework 和TencentOpenApi_IOS_Bu ...