The more, The Better

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8811    Accepted Submission(s):
5141

Problem Description

ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
 

Input

每个测试实例首先包括2个整数,N,M.(1 <= M <= N <=
200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0
则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
 

Output

对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
 

Sample Input

3 2
0 1
0 2
0 3
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
0 0
 

Sample Output

5
13
 

code

第一道树形背包题!

写的题解很啰嗦,是我第一次的时有的疑问。

 /*
hdu 1561 : The more,the better dp[i][j] : 当前i节点及其子树下选择j个城市的最大值为dp[i][j]; 这一道题目注意建立了一个超级根节点0,
任何点都要先拿0才可以。所以后面很多地方都是m+1 下面的转移方程中有一句dp[u][j] = max(dp[u][j],dp[u][j-k]+dp[v][k]);
那么可能就有疑问了:dp[u][j-k]+dp[v][k]
从子树v中取出k个点 与 根树u中取出的j-k个点 合并成 从根树中取j个点
仔细读完就会发现问题了:既然v是u的子树,那么dp[v][k]会不会和dp[u][j-k]冲突呢
即:从子树v中取出K个点,然后在u中取出j-k个点,会不会v中的点又在u个点中出现了呢
答案是不会的。
因为遍历每个从u遍历v,递归求解出dp[v]的值,用v来更新u,也就是说在以前是没有便利到v
的,所以dp[u]中也不是由v更新的,所以dp[u][j-k]的点没有子树v中的点 然后注意转移时m一定要逆序,和01背包相似
01:背包加入一个物品,然后用这个物品更新
f[v],f[v]=max(f[v],f[v-Tiji[i]]+jiazhi[i])
树上的相似:加入一个物品,即遍历到v,然后用这个物品更新
dp[v] = max(dp[v],dp[v-k]+(新节点)子树大小为k的最大价值) //后面的那个递归求解。
然后由于树形背包的限制(拿v之前先拿u)加了一维。 */ #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; const int MAXN = ;
const int MAXM = ; struct Edge{
int to,nxt;
}e[MAXM];
int head[MAXM],tot;
int val[MAXN],dp[MAXN][MAXN]; inline int read() {
int x = ,f = ;char ch = getchar();
for (; ch<''||ch>''; ch = getchar())
if (ch=='-') f = -;
for (; ch>=''&&ch<=''; ch = getchar())
x = x*+ch-'';
return x*f;
}
inline void add_edge(int u,int v) {
e[++tot].to = v,e[tot].nxt = head[u],head[u] = tot;
}
inline void init() {
memset(head,,sizeof(head));
memset(dp,,sizeof(dp));
tot = ;
}
void dfs(int u,int m) {
dp[u][] = val[u];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to;
dfs(v,m);
for (int j=m; j>=; --j)
for (int k=; k<j; ++k)
dp[u][j] = max(dp[u][j],dp[u][j-k]+dp[v][k]);
}
}
int main() {
int n,m;
while (scanf("%d%d",&n,&m)!=EOF && n+m!=) {
init();
for (int u,v,i=; i<=n; ++i) {
u = read(),v = read();
val[i] = v;
add_edge(u,i);
}
val[] = ; // 超级根节点权值为0
dfs(,m+); // 从0开始
printf("%d\n",dp[][m+]);
}
return ;
}
 
 

HDU 1561 The more, The Better(树形背包)的更多相关文章

  1. HDU 1561 The more, The Better 树形DP

    The more, The Better Problem Description   ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M ...

  2. hdu 1561 The more, The Better(树形dp,基础)

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. HDU 1561 (树形DP+背包)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1561 题目大意:从树根开始取点.最多取m个点,问最大价值. 解题思路: cost=1的树形背包. 有 ...

  4. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  5. HDU 1561 树形DP(入门)

    题目链接:  HDU 1561 The more, The Better #include <iostream> #include <cstdio> #include < ...

  6. HDU 1561&HDU 3449 一类简单依赖背包问题

    HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...

  7. poj2486Apple Tree[树形背包!!!]

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9989   Accepted: 3324 Descri ...

  8. HDU 2159 FATE(二维费用背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  9. HDU 1561The more, The Better(树形DP)

    HDU 1561  The more, The Better 题目大意就不说了 直接DP[i][j]表示i为跟节点的子树上攻克j个城堡的所能获得的最多宝物的数量 DP[fa][j] = MAX{DP[ ...

随机推荐

  1. android动画ppt整理

    案例

  2. css对应中文字的英文名称

    中文名 英文名 Unicode Unicode 2 Mac OS 华文细黑 STHeiti Light [STXihei] \534E\6587\7EC6\9ED1 华文细黑 华文黑体 STHeiti ...

  3. {Linux} boot仅剩余XX字节

    1. 查看已安装的linux-image各版本 dpkg --get-selections |grep linux-image   2. 查看我们当前使用的是哪一个版本: uname -a    3. ...

  4. 给广大码农分享福利:一个业界良心的github仓库,中文计算机资料

    我今天查资料时无意发现的,https://github.com/CyC2018/CS-Notes 这个仓库包含了下列几个维度的计算机学习资料: 深受国内程序员喜爱,已经有超过3万多star了. 1. ...

  5. Java 集合框架_中

    Set接口 特点: [1]Set接口表示一个唯一.无序的容器(和添加顺序无关) Set接口常用实现类有 HashSet [1]HashSet是Set接口的实现类,底层数据结构是哈希表. [2]Hash ...

  6. 生成gt数据出问题

    使用cout打印uchar类型数据时,打印出来是其相应的ascii码

  7. Elastic Search Java Api 创建索引结构,添加索引

    创建TCP客户端 Client client = new TransportClient() .addTransportAddress(new InetSocketTransportAddress( ...

  8. 《队长说得队》【Alpha】Scrum meeting 4

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...

  9. Eclipse+Tomcat搭建jsp服务器

    首先,安装java sdk 环境,这里就不多说了,附上java sdk的下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk ...

  10. C# 获取Google Chrome的书签

    其实这个很简单,就是读取一个在用户目录里面的一个Bookmarks文件就好了. 先建立几个实体类 public class GoogleChrome_bookMark_meta_info { publ ...