题意:

给一棵\(n(1 \leq n \leq 10^5)\)个节点的二叉树,除叶子节点外,每个点都有左儿子和右儿子。

每个点上都有一个权值。

游戏规则是这样的:在根节点放一个权值为\(X\)的小球,假设当前节点的权值是\(w_i\)

  • 如果\(X=w_i\),小球就停在这个节点。
  • 如果\(X<w_i\),小球等概率地往左右两个儿子走下去。
  • 如果\(X>w_i\),小球以\(\frac{1}{8}\)的概率走到左儿子,以\(\frac{7}{8}\)的概率走到右儿子。

下面有若干次询问\(v \, X\),问从根节点放一个权值为\(X\)的小球走到节点\(v\)的概率是多少。

分析:

构造一棵主席树,维护父亲权值在区间\([L,R]\)中左儿子和右儿子的个数。

首先判断一下概率为\(0\)的情况,如果找到父亲权值等于小球权值\(X\)的点,那么概率为\(0\)。

否则就统计一下父亲权值小于\(X\)的左儿子个数\(lcnt\),右儿子个数\(rcnt\),以及所有的儿子个数\(sons\)。

所求的概率为:\(p=\frac{1^{lcnt} \cdot 7^{rcnt} \cdot 4^{sons-lcnt-rcnt}}{8}\)

解得\(x=rcnt, \, y=sons+lcnt+rcnt\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 100000 + 10;
const int maxnode = maxn << 5; struct Node
{
int lcnt, rcnt;
Node(int l = 0, int r = 0): lcnt(l), rcnt(r) {}
Node operator + (const Node& t) const {
return Node(lcnt + t.lcnt, rcnt + t.rcnt);
}
}; int sz;
Node T[maxnode];
int lch[maxnode], rch[maxnode];
int root[maxn]; int update(int pre, int L, int R, int pos, Node t) {
int rt = ++sz;
T[rt] = T[pre] + t;
lch[rt] = lch[pre];
rch[rt] = rch[pre];
if(L < R) {
int M = (L + R) / 2;
if(pos <= M) lch[rt] = update(lch[pre], L, M, pos, t);
else rch[rt] = update(rch[pre], M+1, R, pos, t);
}
return rt;
} int n, m, Q;
int a[maxn], b[maxn * 2], tot;
int v[maxn], x[maxn];
int ch[maxn][2];
int dep[maxn]; void dfs(int u) {
if(!ch[u][0]) return;
root[ch[u][0]] = update(root[u], 1, tot, a[u], Node(1, 0));
root[ch[u][1]] = update(root[u], 1, tot, a[u], Node(0, 1));
dep[ch[u][0]] = dep[ch[u][1]] = dep[u] + 1;
dfs(ch[u][0]);
dfs(ch[u][1]);
} bool queryequal(int rt, int L, int R, int pos) {
if(L == R) { return T[rt].lcnt + T[rt].rcnt != 0; }
int M = (L + R) / 2;
if(pos <= M) return queryequal(lch[rt], L, M, pos);
else return queryequal(rch[rt], M+1, R, pos);
} Node queryless(int rt, int L, int R, int pos) {
if(R <= pos) return T[rt];
int M = (L + R) / 2;
if(pos <= M) return queryless(lch[rt], L, M, pos);
else return T[lch[rt]] + queryless(rch[rt], M+1, R, pos);
} int main()
{
int _; scanf("%d", &_);
while(_--) {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", a + i);
b[i - 1] = a[i];
}
scanf("%d", &m);
memset(ch, 0, sizeof(ch));
while(m--) {
int u; scanf("%d", &u);
scanf("%d%d", &ch[u][0], &ch[u][1]);
}
scanf("%d", &Q);
tot = n;
for(int i = 1; i <= Q; i++) {
scanf("%d%d", v + i, x + i);
b[tot++] = x[i];
} sort(b, b + tot);
tot = unique(b, b + tot) - b;
for(int i = 1; i <= n; i++)
a[i] = lower_bound(b, b + tot, a[i]) - b + 1;
for(int i = 1; i <= Q; i++)
x[i] = lower_bound(b, b + tot, x[i]) - b + 1; sz = 0;
dfs(1); for(int i = 1; i <= Q; i++) {
if(queryequal(root[v[i]], 1, tot, x[i])) {
printf("0\n"); continue;
}
Node ans;
if(x[i] > 1) ans = queryless(root[v[i]], 1, tot, x[i] - 1);
int sons = dep[v[i]];
int ans2 = sons * 3;
ans2 -= (sons - ans.lcnt - ans.rcnt) * 2;
int ans7 = ans.rcnt;
printf("%d %d\n", ans7, ans2);
}
} return 0;
}

HDU 4605 Magic Ball Game 主席树的更多相关文章

  1. HDU 4605 Magic Ball Game (在线主席树|| 离线 线段树)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一棵二叉树,每个结点孩子数目为0或者2. ...

  2. hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球 ...

  3. HDU 4605 Magic Ball Game(可持续化线段树,树状数组,离散化)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. hdu 4605 Magic Ball Game

    http://acm.hdu.edu.cn/showproblem.php?pid=4605 可以离线求解 把所以可能出现的 magic ball  放在一个数组里(去重),从小到大排列 先不考虑特殊 ...

  5. HDU 4605 Magic Ball Game (dfs+离线树状数组)

    题意:给你一颗有根树,它的孩子要么只有两个,要么没有,且每个点都有一个权值w. 接着给你一个权值为x的球,它从更节点开始向下掉,有三种情况 x=w[now]:停在此点 x<w[now]:当有孩子 ...

  6. HDU 4605 Magic Ball Game 树状数组

    题目大意很简单. 有一颗树(10^5结点),所有结点要么没有子结点,要么有两个子结点.然后每个结点都有一个重量值,根结点是1 然后有一个球,从结点1开始往子孙结点走. 每碰到一个结点,有三种情况 如果 ...

  7. HDU 4605 Magic Ball Game(离线算法)

    题目链接 思路就很难想+代码实现也很麻烦,知道算法后,已经写的很繁琐而且花了很长时间,200+,好久没写过这么长的代码了. #pragma comment(linker, "/STACK:1 ...

  8. HDU 4602 Magic Ball Game(离线处理,树状数组,dfs)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. HDU 4417 Super Mario(主席树求区间内的区间查询+离散化)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. SpringMVC02 AbstractController And MultiActionController

    1.AbstractController 若处理器继承自AbstractController类,那么该控制器就具有了一些新功能.因为AbstractControll类还继承自一个父类WebConten ...

  2. iOS Runtime常用方法整理

    关于runtime的学习网上有很多博客,在学习之前也查过很多资料,觉得南峰子老师博客中对 runtime 的讲解挺详细的,博客地址:http://southpeak.github.io/categor ...

  3. JAVA基础之转换流和缓冲流

    个人理解: 在理解的字符流和字节流的区别后.要是想读取指定的编码格式的文件时,特别是不是默认的格式时,就需要转换流了,需要注意的是字符流是需要清除缓冲区的:当需要快速的进行读取时,则需要缓冲流.存在即 ...

  4. mui页面间传接值例子

    传值页面index.html <!DOCTYPE html><html><head> <meta charset="utf-8"> ...

  5. 从零开始的Lua宅[1]:编译Lua解释器

    Lua是一门神奇的脚本语言,游戏宅必备,懒人必备.Lua差多不是学起来用起来最简单的语言了,以至于简单到自身就是文档,自身就是配置文件.但是Lua的运行效率却是众多脚本中非常高的,据说仅次于V8爹下的 ...

  6. (五)我的JavaScript系列:JavaScript的糟粕

    泪眼问花花不语,乱红飞过秋千去. JavaScript的糟粕 JavaScript语言是一门集精华与糟粕于一体的语言.在JavaScript: the good parts中,便集中讨论了关于精华与糟 ...

  7. SQLAlchemy的基本使用

    一.介绍 SQLAlchemy是一种ORM(Object-Relational Mapping)框架,用来将关系型数据库映射到对象上.该框架建立在DB API之上,将类和对象转化成SQL,然后使用AP ...

  8. UVA 11572 Unique snowflakes (滑窗)

    用set,保存当前区间出现过的数字,如果下一个数字没有出现过,加入,否则删掉左端点,直到没有重复为止 #include<bits/stdc++.h> using namespace std ...

  9. tpcc-mysql 实践

    一.TPCC 介绍 TPC:全称Transaction Processing Performance Council (事务处理性能委员会),是一家非盈利性组织,该组织制定各种商业应用的基准测试规范, ...

  10. 斐讯k2p 月光银 硬件版本A2-软件版本22.7.8.5 刷官改系统

    Mark https://huabuyu.net/斐讯k2p%20月光银%20硬件版本A2-软件版本22.7.8.5%20刷官改系统.html 详细资源推荐:恩山论坛 https://www.righ ...