poj 3204(最小割--关键割边)
Time Limit: 2000MS | Memory Limit: 131072K | |
Total Submissions: 7491 | Accepted: 2172 |
Description
Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.
Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.
He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?
Input
The input contains exactly one test case.
The first line of the test case contains two integers N, M (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.
M lines follow, each line contains three integers a, b, c, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ a, b < n, c ≤ 100). All the roads are directed.
Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.
Output
Sample Input
2 1
0 1 1
Sample Output
1 题意:从源点0到汇点n-1,问给那些边增加容量会增大整个网络的容量??输出边的数量。
这里有个重要的概念:关键边,关键边定义为 :通过增加某个边的容量使得网络的最大流增加
个人的理解为最小割里面的边一定是关键割边,但关键割边不一定是最小割。
这题的做法是先求一次最大流,然后对残余网络进行两次DFS,从源点的DFS很简单,从正向边搜到边的容量为0即可,得到点集A,标记;主要是从汇点进行第二次DFS,这里就要用到技巧了,网络流有个神奇的反向边,我们从反向边进行DFS(也要判断一下正向边是否为0)得到点集B,标记;然后遍历所有的边,如果某条边的两个端点分别属于点集 A,B,那么这条边肯定就是关键割边,记录之。
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <string.h>
#include <math.h>
#include <iostream>
#include <math.h>
using namespace std;
const int N = ;
const int INF = ;
struct Edge
{
int v,next;
int w;
} edge[N*N];
int head[N];
int level[N];
int tot;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int >q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad)
{
if(u==des) return increaseRoad;
int ret=;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==level[u]+&&w!=)
{
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w>)
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad) return ret;
}
else level[v] = -;
}
}
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
int vis[N];
void dfs0(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w = edge[k].w; if(!vis[v]&&w>)
{
dfs0(v);
}
}
}
void dfs1(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
if(!vis[v]&&edge[k^].w>&&edge[k].w>) ///汇点利用反向边进行搜索,这里还要判断一下正向边是否大于0
{
dfs1(v);
}
}
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=; i<m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
addEdge(u,v,w,tot);
}
memset(vis,,sizeof(vis));
Dinic(,n-);
dfs0();
dfs1(n-);
int ans = ;
for(int u=; u<n; u++)
{
for(int k=head[u]; k!=-; k=edge[k].next)
{
if(k%==) continue; ///只考虑正向边
if(vis[u]==&&vis[edge[k].v]==) ans++;
}
}
printf("%d\n",ans);
}
poj 3204(最小割--关键割边)的更多相关文章
- HDU 3251 Being a Hero(最小割+输出割边)
Problem DescriptionYou are the hero who saved your country. As promised, the king will give you some ...
- poj 2125(最小割)
题目链接:http://poj.org/problem?id=2125 思路:将最小点权覆盖转化为最小割模型,于是拆点建图,将点i拆成i,i+n,其中vs与i相连,边容量为w[i]-,i+n与vt相连 ...
- POJ 3469 最小割 Dual Core CPU
题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...
- poj1815Friendship(最小割求割边)
链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量 ...
- 网络流 poj 3308 最小割
t个样例 n*m的矩阵 L个伞兵 给出每行每列装激光的花费 伞兵的位置 要求杀死所有伞兵 总费用为这些费用的乘积 求花费最小 建图 源点 -> 行 -> 列 -> 汇点 ...
- [BZOJ 1797][AHOI2009]最小割(最小割关键边的判断)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1797 分析: 在残余网络中看: 对于第1问: 1.首先这个边必须是满流 2.其次这个边 ...
- poj 3084 最小割
题目链接:http://poj.org/problem?id=3084 本题主要在构图上,我采用的是把要保护的房间与源点相连,有intruder的与汇点相连,相对麻烦. #include <cs ...
- HDU3987(最小割最少割边)
Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65536/ ...
- poj 3469 最小割模板sap+gap+弧优化
/*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...
随机推荐
- 消息队列之JMS和AMQP对比
https://blog.csdn.net/hpttlook/article/details/23391967 AMQP & JMS对比 初次接触消息队列时,在网上搜索,总是会提到如JMS.A ...
- Linux下同进程多进程号实时监控
一.需求: Linux上对一个进程名称可能会对应的多个进程号的进程进行监控,如果有多个则输出到一个日志文件. 以上问题针对的是一个定时程序还未运行结束,到下一个时刻程序又运行起来了,避免造成重复调用接 ...
- 22.Yii2.0框架多表关联一对一查询之hasOne
思路: 通过文章查它对应的分类信息 一对一的关系 控制器里 //一对一关联查询 public function actionRelatesone() { //方法一,hasOne() 用查一条文章的结 ...
- tp5使用外部类的三种方法
在tp5中使用外部类的时候有三种方法 第一种就是通过composer下载,通过这种方式下载的外部类能够支持自动加载,我们只要在使用的时候use一下命名空间就可以使用了 比如:我们的tp5第四季项目要使 ...
- 《linux设备驱动开发详解》笔记——7并发控制
linux中并发无处不在,底层驱动需要考虑. 7.1 并发与竞争 7.1.1 概念 并发:Concurrency,多个执行单元同时.并行执行 竞争:Race Condistions,并发的执行单元对共 ...
- POJ:1751-Highways(Kruskal和Prim)
Highways Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6078 Accepted: 1650 Special Judg ...
- delphi xe7 多线程调用CMD,使用管道,临界区技术,实现指定用户名,多线程,异步返回CMD命令结果到memo
第一次发这个,发现格式很乱,不好看,可以用XE7的project--format project sources命令格式化一下代码. 后面我会上传此次修改函数用的源代码到云盘 链接: http://p ...
- kNN的维数灾难与PCA降维
主成分分析 PCA 协方差矩阵 假设我们有 \[ X = \begin{pmatrix}X_1\\X_2\\\vdots\\X_m\end{pmatrix}\in\mathbb{R}^{m\times ...
- EOJ Monthly 2018.3
985月赛我只喜欢ECNU.jpg A. 打工时不可能打工的 Time limit per test: 2.0 seconds Memory limit: 256 megabytes 我 Ayano ...
- spring scope 属性的取值
Spring 容器是通过单例模式创建 Bean 对象的,也就是说,默认情况下,通过调用 ac.getBean("mybean")方法获得的对象都是同一个 mybean 对象 使用单 ...