题目链接

  神奇的线段树合并qwq   不过就思路而言很好想……

  观察到一棵树无论怎么交换两棵左右子树,子树内部的最优逆序对并没影响……决策只影响左右子树之间的逆序对……

  于是线段树合并直接乱搞就好啦

  

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#define mid ((l+r)>>1)
#define check(x) if(x==0) x=++tot;
#define maxn 400200
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long ls[maxn];
long long rs[maxn];
long long q[maxn];
long long root[maxn];
long long lc[maxn*];
long long rc[maxn*];
long long tree[maxn*];
long long f[maxn];
long long c,w;
long long ans;
long long n,tot,cnt; inline void pushup(long long rt){ tree[rt]=tree[lc[rt]]+tree[rc[rt]]; } void update(long long o,long long l,long long r,long long &rt){
check(rt);
if(l==r){
tree[rt]++; return;
}
if(o<=mid) update(o,l,mid,lc[rt]);
else update(o,mid+,r,rc[rt]);
pushup(rt);
} void gettree(long long &x){
x=++cnt;
q[x]=read();
if(q[x]) return;
gettree(ls[x]);
gettree(rs[x]);
return;
} long long merge(long long x,long long y){
if(x==) return y;
if(y==) return x;
c+=tree[rc[x]]*tree[lc[y]];
w+=tree[lc[x]]*tree[rc[y]];
lc[x]=merge(lc[x],lc[y]);
rc[x]=merge(rc[x],rc[y]);
pushup(x);
return x;
} void calc(long long x){
if(q[x]) return;
calc(ls[x]);
calc(rs[x]);
c=w=;
root[x]=merge(root[ls[x]],root[rs[x]]);
ans+=min(c,w);
return;
} void build(long long x){
if(q[x]){
update(q[x],,n,root[x]);
return;
}
build(ls[x]);
build(rs[x]);
return;
} long long Root; int main(){
n=read();
gettree(Root);
build();
calc();
printf("%lld",ans);
return ;
}

【Luogu】P3521ROT-Tree Rotations(线段树合并)的更多相关文章

  1. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  2. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  3. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  4. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  5. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  6. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  7. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. bzoj2212 Tree Rotations 线段树合并+动态开点

    题目传送门 思路: 区间合并线段树的题,第一次写,对于一颗子树,无论这个子树怎么交换,都不会对其他子树的逆序对造成影响,所以就直接算逆序对就好. 注意叶子节点是1到n的全排列,所以每个权值都只会出现1 ...

  9. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  10. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

随机推荐

  1. BZOJ 4491: 我也不知道题目名字是什么 RMQ

    4491: 我也不知道题目名字是什么 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 317  Solved: 174[Submit][Status][ ...

  2. 使用脚本在Linux服务器上自动安装Kubernetes的包管理器Helm

    Helm之于Kubernetes好比yum之于Red Hat Enterprise Linux,或者apt-get之于Ubuntu. Helm是由helm CLI和Tiller组成,是典型的Clien ...

  3. 使用Process组件访问本地进程

    实现效果; 知识运用: Process组件的StartInfo属性 //获取或设置要传递给Process的Start方法的属性 public ProcessStartInfo StartInfo {g ...

  4. javaweb基础(22)_Servlet+JSP+JavaBean实战登陆

    一.Servlet+JSP+JavaBean开发模式(MVC)介绍 Servlet+JSP+JavaBean模式(MVC)适合开发复杂的web应用,在这种模式下,servlet负责处理用户请求,jsp ...

  5. mysql 定时任务job

    mysql 定时任务job 1.通过show EVENTS显示当前定义的事件 2.检查event_scheduler状态:SHOW VARIABLES LIKE 'event_scheduler' 3 ...

  6. skynet 学习笔记-sproto模块(2)

    云风在skynet中继承了sproto的传输协议,对比protobuf的好处是,能明文看到传输内容,而且skynet不需要protobuf这么功能,所以云风也建议在lua层使用sproto来作为sky ...

  7. presenting view controller

    Present ViewController详解 Present ViewController Modally 一.主要用途 弹出模态ViewController是IOS变成中很有用的一个技术,UIK ...

  8. cnpm 莫名奇妙bug 莫名奇妙的痛

    cnpm 莫名奇妙bug 莫名奇妙的痛 最近想搭建react@v16 和 react-router@v4,搭建过程打算用vue脚手架webpack模板那套配置方法(webpack3). 由于我之前安装 ...

  9. vuePress的使用

    今天来玩一玩vuePress的使用,用markdown来编辑一个页面网站,这里谈论到了简单使用,细节可以去官网上去查看 开始安装 项目依赖 // package.json { "name&q ...

  10. MySQL 如何将Id相同的字段合并,并且以逗号隔开

    数据库存的数据 sql: SELECT Id,GROUP_CONCAT(`Name` SEPARATOR ',') NAMES FROM `stu` GROUP BY Id;