题面

传送门

思路

仔细观察题目要求的东西,发现就是求一个最小路径覆盖,只不过可以跳跃(就是那个鬼畜的超级跳跃)

那么就直接上最小路径覆盖模版

对每个点,拆成两个点$X_i$和$Y_i$,建立超级源超级汇S,T

连边$\left(S,X_i\right)$,$\left(Y_i,T\right)$,流量1费用0

对于原图中的边$\left(i,j\right)$,连边$\left(X_i,Y_j\right)$,流量1费用为原本的时间

对于超级跳跃,连边$\left(S,Y_i\right)$,流量1费用为跳跃时间

跑S-T最小费用最大流即可

Code

在luogu+COGS上莫名其妙T了

但是bzoj2400ms过

interesting......

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int first[2010],dis[2010],vis[2010],n,m,cnt=-1,ans;
struct edge{
int to,next,w,cap;
}a[150010];
inline void add(int u,int v,int w,int cap){
a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
int q[100010];
bool spfa(int s,int t){
int head=0,tail=1,i,u,v,w;
memset(dis,-1,sizeof(dis));memset(vis,0,sizeof(vis));
q[0]=t;dis[t]=0;vis[t]=1;
while(head<tail){
u=q[head++];vis[u]=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(a[i^1].cap&&((dis[v]==-1)||(dis[v]>dis[u]-w))){
dis[v]=dis[u]-w;
if(!vis[v]) q[tail++]=v,vis[v]=1;
}
}
}
return ~dis[s];
}
int dfs(int u,int t,int limit){
if((u==t)||(!limit)){vis[u]=1;return limit;}
int i,v,f,flow=0,w;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(dis[v]==dis[u]-w&&a[i].cap&&!vis[v]){
if(!(f=dfs(v,t,min(limit,a[i].cap)))) continue;
a[i].cap-=f;a[i^1].cap+=f;
ans+=f*w;flow+=f;limit-=f;
if(!limit) return flow;
}
}
return flow;
}
int zkw(int s,int t){
int re=0;
while(spfa(s,t)){
vis[t]=1;
while(vis[t]){
memset(vis,0,sizeof(vis));
re+=dfs(s,t,inf);
}
}
return re;
}
int jump[1010];
int main(){
freopen("starrace8.in","r",stdin);
freopen("starrace.out","w",stdout);
memset(first,-1,sizeof(first));
n=read();m=read();int i,t1,t2,t3;
for(i=1;i<=n;i++) jump[i]=read(),add(0,i+n,jump[i],1);
for(i=1;i<=m;i++){
t1=read();t2=read();t3=read();
if(t1>t2) swap(t1,t2);
add(t1,t2+n,t3,1);
}
for(i=1;i<=n;i++) add(0,i,0,1),add(i+n,(n<<1)+1,0,1);
zkw(0,(n<<1)+1);
printf("%d\n",ans);
}

[SDOI2010][bzoj1927] 星际竞速 [最小路径覆盖+费用流]的更多相关文章

  1. LibreOJ 6002 最小路径覆盖(最大流)

    题解:最小路径覆盖=总点数减去最大匹配数,拆点,按照每条边前一个点连源点,后一个点连汇点跑最大流,即可跑出最大匹配数,然后减一减就可以了~ 代码如下: #include<queue> #i ...

  2. Loj 6002 最小路径覆盖(最大流)

    题意: 求不相交的最小路径覆盖 思路: 连边跑二分图,匹配一条边相当于缩了一条边,答案为n-maxflow 如果是求可以相交的最小路径覆盖的话,先用Floyd跑出可达矩阵,然后所有可达的点连边跑二分图 ...

  3. BZOJ-1927 星际竞速 最小费用最大流+拆点+不坑建图

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 1593 Solved: 967 [Submit][Statu ...

  4. 【bzoj1927】[Sdoi2010]星际竞速 有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832464.html 题目描述 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军 ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)

    题意 题目链接 Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\) 为什么呢?首先最坏情况下是用\(n ...

  7. 【洛谷2469/BZOJ1927】[SDOI2010]星际竞速(费用流/最小路径覆盖)

    题目: 洛谷2469 分析: 把题目翻译成人话:给一个带边权的DAG,求一个路径覆盖方案使路径边权总和最小.从点\(i\)开始的路径需要额外加上\(A_i\)的权值. 回xian忆chang一xue下 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

随机推荐

  1. elasticsearch RestHighLevelClient 使用方法及封装工具

    目录 EsClientRHL 更新日志 开发原因: 使用前你应该具有哪些技能 工具功能范围介绍 工具源码结构介绍 开始使用 未来规划 git地址:https://gitee.com/zxporz/ES ...

  2. 快速排序算法思路分析和C++源代码(递归和非递归)

    快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此很多软件公司的笔试面试喜欢考这个. 快速排序是C.R.A.Hoar ...

  3. 使用POI解析Excel文件

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 下载开发包: 解压上面的zip文件: 在项目中引入 ...

  4. 线程池是什么?Java四种线程池的使用介绍

    使用线程池的好处有很多,比如节省系统资源的开销,节省创建和销毁线程的时间等,当我们需要处理的任务较多时,就可以使用线程池,可能还有很多用户不知道Java线程池如何使用?下面小编给大家分享Java四种线 ...

  5. 分享一个漂亮按钮插件FancyButtons

    一转眼,2018年的第10天就这样过去了.回看17年,曾经做了些啥都忘记了,就像每一天写日志时的样子(双手放在键盘上,怒着嘴,抬着头,望着天花板), 然后突然记得好像好久没有写随笔了(@_@).自从配 ...

  6. mysql主从复制及双主复制

    之前做过一次在单台机器上的多实例的mysql,这次分开做,使用两台主机. 这里使用的主机地址分别为: MASTER:192.168.214.135 SLAVE  : 192.168.214.128 这 ...

  7. linux下/dev/null被误删

    /dev/null文件是一个特殊的设备文件,可以用于清空一些日志文件,或者是使一些信息输出到此文件,用以节省硬盘空间.如果该空文件/dev/null文件被误删除掉, 如何再使用系统命令重新创建并设置该 ...

  8. FreeRTOS的学习路线

    背景 由于之前接触过一些嵌入式RTOS,如Keil-RTX,uCOS-II,也曾经关注过FreeRTOS,但一直没有机会采用FreeRTOS开发.目前FreeRTOS做为主流RTOS,风声正盛.作为嵌 ...

  9. Swoole 4.1.0 正式版发布,支持原生 Redis/PDO/MySQLi 协程化

    重大新特性 支持 Redis/PDO/MySQLi 从4.1.0版本开始支持了对PHP原生Redis.PDO.MySQLi协程化的支持. 可使用Swoole\Runtime::enableCorotu ...

  10. nuxt.js express模板项目虚拟目录部署问题汇总

    声明环境 反向代理:nginx或者iis的ARR 模板项目:nuxt-express 部署环境:windows 经过了一段时间在windows环境部署项目来看,关于虚拟目录的问题汇总如下, 发布场景假 ...