题面

传送门

思路

仔细观察题目要求的东西,发现就是求一个最小路径覆盖,只不过可以跳跃(就是那个鬼畜的超级跳跃)

那么就直接上最小路径覆盖模版

对每个点,拆成两个点$X_i$和$Y_i$,建立超级源超级汇S,T

连边$\left(S,X_i\right)$,$\left(Y_i,T\right)$,流量1费用0

对于原图中的边$\left(i,j\right)$,连边$\left(X_i,Y_j\right)$,流量1费用为原本的时间

对于超级跳跃,连边$\left(S,Y_i\right)$,流量1费用为跳跃时间

跑S-T最小费用最大流即可

Code

在luogu+COGS上莫名其妙T了

但是bzoj2400ms过

interesting......

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int first[2010],dis[2010],vis[2010],n,m,cnt=-1,ans;
struct edge{
int to,next,w,cap;
}a[150010];
inline void add(int u,int v,int w,int cap){
a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
int q[100010];
bool spfa(int s,int t){
int head=0,tail=1,i,u,v,w;
memset(dis,-1,sizeof(dis));memset(vis,0,sizeof(vis));
q[0]=t;dis[t]=0;vis[t]=1;
while(head<tail){
u=q[head++];vis[u]=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(a[i^1].cap&&((dis[v]==-1)||(dis[v]>dis[u]-w))){
dis[v]=dis[u]-w;
if(!vis[v]) q[tail++]=v,vis[v]=1;
}
}
}
return ~dis[s];
}
int dfs(int u,int t,int limit){
if((u==t)||(!limit)){vis[u]=1;return limit;}
int i,v,f,flow=0,w;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(dis[v]==dis[u]-w&&a[i].cap&&!vis[v]){
if(!(f=dfs(v,t,min(limit,a[i].cap)))) continue;
a[i].cap-=f;a[i^1].cap+=f;
ans+=f*w;flow+=f;limit-=f;
if(!limit) return flow;
}
}
return flow;
}
int zkw(int s,int t){
int re=0;
while(spfa(s,t)){
vis[t]=1;
while(vis[t]){
memset(vis,0,sizeof(vis));
re+=dfs(s,t,inf);
}
}
return re;
}
int jump[1010];
int main(){
freopen("starrace8.in","r",stdin);
freopen("starrace.out","w",stdout);
memset(first,-1,sizeof(first));
n=read();m=read();int i,t1,t2,t3;
for(i=1;i<=n;i++) jump[i]=read(),add(0,i+n,jump[i],1);
for(i=1;i<=m;i++){
t1=read();t2=read();t3=read();
if(t1>t2) swap(t1,t2);
add(t1,t2+n,t3,1);
}
for(i=1;i<=n;i++) add(0,i,0,1),add(i+n,(n<<1)+1,0,1);
zkw(0,(n<<1)+1);
printf("%d\n",ans);
}

[SDOI2010][bzoj1927] 星际竞速 [最小路径覆盖+费用流]的更多相关文章

  1. LibreOJ 6002 最小路径覆盖(最大流)

    题解:最小路径覆盖=总点数减去最大匹配数,拆点,按照每条边前一个点连源点,后一个点连汇点跑最大流,即可跑出最大匹配数,然后减一减就可以了~ 代码如下: #include<queue> #i ...

  2. Loj 6002 最小路径覆盖(最大流)

    题意: 求不相交的最小路径覆盖 思路: 连边跑二分图,匹配一条边相当于缩了一条边,答案为n-maxflow 如果是求可以相交的最小路径覆盖的话,先用Floyd跑出可达矩阵,然后所有可达的点连边跑二分图 ...

  3. BZOJ-1927 星际竞速 最小费用最大流+拆点+不坑建图

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 1593 Solved: 967 [Submit][Statu ...

  4. 【bzoj1927】[Sdoi2010]星际竞速 有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832464.html 题目描述 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军 ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)

    题意 题目链接 Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\) 为什么呢?首先最坏情况下是用\(n ...

  7. 【洛谷2469/BZOJ1927】[SDOI2010]星际竞速(费用流/最小路径覆盖)

    题目: 洛谷2469 分析: 把题目翻译成人话:给一个带边权的DAG,求一个路径覆盖方案使路径边权总和最小.从点\(i\)开始的路径需要额外加上\(A_i\)的权值. 回xian忆chang一xue下 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

随机推荐

  1. 深入理解计算机系统_3e 第二章家庭作业 CS:APP3e chapter 2 homework

    初始完成日期:2017.9.26 许可:除2.55对应代码外(如需使用请联系 randy.bryant@cs.cmu.edu),任何人可以自由的使用,修改,分发本文档的代码. 本机环境: (有一些需要 ...

  2. Unity的sendmessage用法

    刚学完sendmessage用法,自己也尝试测试了一下,用法如下: 1.在unity2017新建一个场景test 2.在场景中添加一个立方体cube作为主角,另添加一个胶囊体capsule,调整为如图 ...

  3. systemd 中的requires, wants, before, after

    man systemd.unit    man systemd.service ###依赖关系和前后顺序* 依赖关系:Requires和Wants * 前后顺序:After,Before 依赖关系,前 ...

  4. primeng 中 pickList组件的使用

    primeng 是为angular 开发的一个强大的组建库,有很多强大的功能,拿来即用.但要真正满足自己的业务需求,就是按自己的需求进行修改,比如默认的样式等等. 进入正题. pickList 组件的 ...

  5. 【NTT】loj#6261. 一个人的高三楼

    去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...

  6. java util - MD5/AES/RSA快速调用工具

    测试代码 package cn.java.security; import java.security.Key; import java.util.Base64; import org.junit.A ...

  7. 哦?原来Python 面试题是这样的,Python面试题No19

    本面试题题库,由公号:非本科程序员 整理发布 第1题:是否遇到过python的模块间循环引用的问题,如何避免它? 这是代码结构设计的问题,模块依赖和类依赖 如果老是觉得碰到循环引用可能的原因有几点: ...

  8. Python中的dict

    dict_lst = [ ('字典的键必须可哈希',), ('字典的键重复覆盖',), ('字典可迭代') ('增',), ('删',), ('改',), ('查',), ('练习',), ] 字典的 ...

  9. Linux命令之---which简单介绍

    命令简介 which命令的作用是,在PATH变量指定的路径中,搜索某个系统命令的位置,并且返回第一个搜索结果.也就是说,使用which命令,就可以看到某个系统命令是否存在,以及执行的到底是哪一个位置的 ...

  10. DiyCode开源项目 AboutActivity分析

    1.首先看一下效果 这是手机上显示的效果: 1.1首先是一个标题栏,左侧一个左箭头,然后一个图标. 1.2然后下方是一个可以滑动的页面. 1.3分成了7个部分. 1.4DiyCode的图标. 1.5然 ...