Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 25310   Accepted: 7022

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

题目链接:POJ 2728

原理与NYOJ那道题相似,只是这次的X集合取值有了更多的限制,即取X的边必须要是一颗生成树。

题目要求的是令$ {\Sigma cost} \over {\Sigma len} $最小,这是显然的,日常生活中肯定是让平均花费越小才越省钱,类比NYOJ的入门题,如何确定${X_i}$的取值呢?不是简单地贪心找最大,而是在最小(最大)生成树中确定它是要找一个最大的比例,而且这题是要找到一个最小的比例,那么我们用最小生成树来做即可。二分的速度没有那种迭代法快,有时候还容易超时……,哦对了这题我用邻接表手写的200W堆和自带的pq都是超时的,不得已去搬了一个邻接矩阵的朴素Prim模版没想到过了,可能是我堆写的丑……

二分代码(2360MS):

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = N * N * 2;
const double eps = 1e-6;
struct info
{
double x, y, z;
} P[N]; bitset<N>vis;
double cost[N][N], len[N][N], lowcost[N], Map[N][N]; inline double getlen(info a, info b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline double getcost(info a, info b)
{
return fabs(a.z - b.z);
}
double prim(int n, double k)
{
int i, j;
vis.reset();
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Map[i][j] = cost[i][j] - k * len[i][j]; for (i = 1; i <= n; ++i)
lowcost[i] = Map[1][i]; double ret = 0;
vis[1] = 1;
lowcost[1] = 1e16; for (i = 1; i < n; ++i)
{
double Min = 1e16;
int pos;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] < Min)
{
Min = lowcost[j];
pos = j;
}
}
ret += lowcost[pos];
vis[pos] = 1;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] > Map[pos][j])
lowcost[j] = Map[pos][j];
}
}
return ret;
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n) && n)
{
for (i = 1; i <= n; ++i)
scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
double Maxk = -1e16;
for (i = 1; i <= n; ++i)
{
for (j = i + 1; j <= n; ++j)
{
double c = getcost(P[i], P[j]);
double l = getlen(P[i], P[j]);
cost[i][j] = cost[j][i] = c;
len[i][j] = len[j][i] = l;
Maxk = max(Maxk, c / l);
}
}
double L = 0, R = Maxk;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (prim(n, mid) > 0)
{
ans = mid;
L = mid;
}
else
R = mid;
}
printf("%.3f\n", ans);
}
return 0;
}

Dinkelbach迭代法代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const double eps = 1e-6;
struct info
{
double x, y, z;
} P[N]; bitset<N>vis;
double cost[N][N], len[N][N], lowcost[N], Map[N][N];
int pre[N]; inline double getlen(info a, info b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline double getcost(info a, info b)
{
return fabs(a.z - b.z);
}
double prim(int n, double k)
{
/**< 用k值重新赋边权值 */
int i, j;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Map[i][j] = cost[i][j] - k * len[i][j]; /**< 必要的初始化 */
vis.reset();
for (i = 1; i <= n; ++i)
{
lowcost[i] = Map[1][i];
pre[i] = 1;
}
vis[1] = 1;
double sumcost = 0, sumlen = 0; /**< Prim过程 */
for (i = 1; i < n; ++i)
{
double Min = 1e19;
int pos = 0;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] < Min)
{
pos = j;
Min = lowcost[j];
}
}
vis[pos] = 1;
sumcost += cost[pre[pos]][pos];
sumlen += len[pre[pos]][pos];
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] > Map[pos][j])
{
lowcost[j] = Map[pos][j];
pre[j] = pos;
}
}
}
return sumcost / sumlen;
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n) && n)
{
for (i = 1; i <= n; ++i)
scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
for (i = 1; i <= n; ++i)
{
for (j = i + 1; j <= n; ++j)
{
double c = getcost(P[i], P[j]);
double l = getlen(P[i], P[j]);
cost[i][j] = cost[j][i] = c;
len[i][j] = len[j][i] = l;
}
}
double ans = 0, temp = 0;
while (1)
{
temp = prim(n, ans);
if (fabs(ans - temp) < eps)
break;
ans = temp;
}
printf("%.3f\n", ans);
}
return 0;
}

POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)的更多相关文章

  1. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  2. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  3. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  4. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  5. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  6. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  7. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  8. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  9. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. 第八章 熟练dom的几个常用方法

    显示“缩略词语” <abbr> 标签指示简称或缩写,比如 <abbr title="World Wide Web Consortium">W3C</a ...

  2. selective search生成.mat文件

    https://github.com/sergeyk/selective_search_ijcv_with_python 里的selective_search.py是python接口 import t ...

  3. ssh: connect to host localhost port 22: Connection refused

    1.hadoop安装好之后,执行ssh localhost无法执行, 提示“ssh: connect to host localhost port 22: Connection refused”. 2 ...

  4. WebViewJavaScriptBridge的原理解析

    理解WebViewJavaScriptBridge原理 前提条件都是需要bridge在OC实例化,然后二者的互调才可以进行下去 _bridge = [WebViewJavascriptBridge b ...

  5. notify()和notifyAll()主要区别

    notify()和notifyAll()都是Object对象用于通知处在等待该对象的线程的方法. void notify(): 唤醒一个正在等待该对象的线程.void notifyAll(): 唤醒所 ...

  6. js控制时间显示格式

    Date.prototype.Format = function (fmt) { //author: meizz     var o = {        "M+": this.g ...

  7. mac利用套件管理工具homebrew正确地同时安装python2.7和python3

    MAC OSX 正確地同時安裝 PYTHON 2.7 和 PYTHON3     Python3 出來了(其實已經出來很久了,暈)!但是還是有很多 library 還是使用 Python2.7,所以要 ...

  8. python 进度条 打印

  9. MySQL的备份与恢复理解与备份策略

    MySQL的备份主要分为逻辑备份和物理备份 逻辑备份 在MySQL中逻辑备份的最大优点是对各种存储引擎都可以用同样的方法来备份.而物理备份则不同,不同的存储引擎有着不同的备份方法.Mysql中的逻辑备 ...

  10. 精读《Epitath 源码 - renderProps 新用法》

    1 引言 很高兴这一期的话题是由 epitath 的作者 grsabreu 提供的. 前端发展了 20 多年,随着发展中国家越来越多的互联网从业者涌入,现在前端知识玲琅满足,概念.库也越来越多.虽然内 ...