CF741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

分析:

  • 最多有一个字符出现奇数次
  • 维护某个状态下深度的最大值,注意是全局深度
  • 写成非递归形式方便理解

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 500050
#define M (1<<22)
#define inf 0x3f3f3f3f
int head[N],to[N<<1],nxt[N<<1],cnt,n,val[N<<1];
int mx[M],siz[N],ans[N],son[N];
int dfn[N],idf[N],enp[N];
int nowans,dep[N],len[N];
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
void df1(int x,int y) {
int i;
siz[x]=1; len[x]=len[y]+1;
dfn[x]=++dfn[0]; idf[dfn[0]]=x;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y) {
dep[to[i]]=dep[x]^(1<<val[i]);
df1(to[i],x);
siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
enp[x]=dfn[0];
}
void df2(int x,int y,int opt) {
int i;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y&&to[i]!=son[x]) {
df2(to[i],x,0); ans[x]=max(ans[x],ans[to[i]]);
}
if(son[x]) {
df2(son[x],x,1);
ans[x]=max(ans[x],ans[son[x]]);
nowans=max(nowans,mx[dep[x]]-len[x]);
for(i=0;i<22;i++) nowans=max(nowans,mx[dep[x]^(1<<i)]-len[x]);
}
mx[dep[x]]=max(mx[dep[x]],len[x]);
for(i=head[x];i;i=nxt[i]) if(to[i]!=y&&to[i]!=son[x]) {
int t=to[i],j,p,k;
for(j=dfn[t];j<=enp[t];j++) {
p=idf[j];
nowans=max(nowans,mx[dep[p]]+len[p]-len[x]*2);
for(k=0;k<22;k++) nowans=max(nowans,mx[ dep[p]^(1<<k) ]+len[p]-len[x]*2);
}
for(j=dfn[t];j<=enp[t];j++) {
p=idf[j];
mx[dep[p]]=max(mx[dep[p]],len[p]);
}
}
ans[x]=max(ans[x],nowans);
if(!opt) {
nowans=-inf;
for(i=dfn[x];i<=enp[x];i++) mx[dep[idf[i]]]=-inf;
}
}
int main() {
memset(mx,0xc0,sizeof(mx));
scanf("%d",&n);
int i,x;
char op[4];
for(i=2;i<=n;i++) {
scanf("%d%s",&x,op);
add(x,i,op[0]-'a'); add(i,x,op[0]-'a');
}
df1(1,0);
df2(1,0,1);
for(i=1;i<=n;i++) printf("%d ",ans[i]);
}

BZOJ5457: 城市

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 400050
int head[N],to[N<<1],nxt[N<<1],n,m,cnt;
int a[N],b[N],dfn[N],idf[N],fa[N],enp[N],son[N],siz[N],top[N];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
char buf[100000],*p1,*p2;
inline int rd() {
int x=0;char c=nc();
while(c<48)c=nc();
while(c>47)x=((x+(x<<2))<<1)+(c^48),c=nc();
return x;
}
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void df1(int x,int y) {
int i; fa[x]=y;
siz[x]=1; dfn[x]=++dfn[0]; idf[dfn[0]]=x;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y) {
df1(to[i],x);
siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
enp[x]=dfn[0];
}
int nowans,ans[N],c[N],tot[N];
void df2(int x) {
int i,j,t,lim;
for(i=head[x];i;i=nxt[i]) if(to[i]!=son[x]&&to[i]!=fa[x]) {
df2(to[i]);
}
if(son[x]) df2(son[x]);
c[a[x]]+=b[x];
if(c[nowans]<c[a[x]]||(c[nowans]==c[a[x]]&&nowans>a[x])) {
nowans=a[x];
}
for(i=head[x];i;i=nxt[i]) if(to[i]!=son[x]&&to[i]!=fa[x]) {
t=to[i],lim=enp[t];
for(j=dfn[t];j<=lim;j++) {
int p=idf[j];
c[a[p]]+=b[p];
if(c[nowans]<c[a[p]]||(c[nowans]==c[a[p]]&&nowans>a[p])) {
nowans=a[p];
}
}
}
ans[x]=nowans; tot[x]=c[nowans];
if(son[fa[x]]!=x) {nowans=0;for(lim=enp[x],i=dfn[x];i<=lim;i++) c[a[idf[i]]]=0;}
}
char pbuf[4000000],*pp=pbuf;
int sta[30],tp;
void write(int x) {
if(x<0) *pp++='-',x=-x;
do {sta[++tp]=x%10,x/=10;}while(x);
while(tp)*pp++=sta[tp--]+'0';
}
int main() {
n=rd(),m=rd();
int i,x,y;
for(i=1;i<n;i++) x=rd(),y=rd(),add(x,y),add(y,x);
for(i=1;i<=n;i++) a[i]=rd(),b[i]=rd();
df1(1,0); df2(son[0]=1);
for(i=1;i<=n;i++) {
write(ans[i]); *pp++=' '; write(tot[i]); *pp++='\n';
}
fwrite(pbuf,1,pp-pbuf,stdout);
}

dsu on tree(无讲解)的更多相关文章

  1. dsu on tree:关于一类无修改询问子树可合并问题

    dsu on tree:关于一类无修改询问子树可合并问题 开始学长讲课的时候听懂了但是后来忘掉了....最近又重新学了一遍 所谓\(dsu\ on\ tree\)就是处理本文标题:无修改询问子树可合并 ...

  2. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  3. Dsu on Tree

    这个属于一种技巧,可以解决类似于子树询问无修改可离线的问题,一些点分治的问题也可以用Dsu on Tree解决,并且常数较小,代码复杂度低,很具有可写性. 整体上的意思就是继承重儿子的信息,暴力修改轻 ...

  4. dsu on tree题表

    dsu on tree,又名树上启发式合并.重链剖分,是一类十分实用的trick,它常常可以作为一些正解的替代算法: 1.DFS序+线段树/主席树/线段树合并 2.对DFS序分块的树上莫队 3.长链剖 ...

  5. DSU on Tree浅谈

    DSU on tree 在之前的一次比赛中,学长向我们讲了了这样一个神奇的思想:DSU on tree(树上启发式合并),看上去就非常厉害--但实际上是非常暴力的一种做法;不过暴力只是看上去暴力,它在 ...

  6. dsu on tree学习笔记

    前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...

  7. CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]

    D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...

  8. CF 570D. Tree Requests [dsu on tree]

    传送门 题意: 一棵树,询问某棵子树指定深度的点能否构成回文 当然不用dsu on tree也可以做 dsu on tree的话,维护当前每一个深度每种字母出现次数和字母数,我直接用了二进制.... ...

  9. [dsu on tree]【学习笔记】

    十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下 Codeforces原文链接 dsu on tree 简介 我也不清楚dsu是什么的英文缩写... 就像是树上的启发式合 ...

随机推荐

  1. 概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解

    概率分布(Distributions) 如图1所看到的,这是最简单的联合分布案例,姑且称之为学生模型. 图1 当中包括3个变量.各自是:I(学生智力,有0和1两个状态).D(试卷难度,有0和1两个状态 ...

  2. 深入Asyncio(十一)优雅地开始与结束

    Startup and Shutdown Graceful 大部分基于asyncio的程序都是需要长期运行.基于网络的应用,处理这种应用的正确开启与关闭存在惊人的复杂性. 开启相对来说更简单点,常规做 ...

  3. 【LeetCode从零单排】No.135Candy(双向动态规划)

    1.题目 There are N children standing in a line. Each child is assigned a rating value. You are giving ...

  4. 机器学习中的EM算法具体解释及R语言实例(1)

    最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開 ...

  5. 有状态的EJB对象和无状态的EJB对象

    一,定义有状态Bean和无状态Bean 有状态Bean: @Stateful @Remote public class StatefulEjbBean implements StatefulEjb{ ...

  6. 初识ASP.net-牛腩新闻公布系统

           在做牛腩新闻公布的系统的时候,总有一种感觉就是:我仍然在敲机房收费系统,唯一不同的一点.就是敲机房收费的时候,用户界面是是自己手动画界面.而,在牛腩新闻公布系统中,用户界面,却是须要自己 ...

  7. iOS - 集成SDK问题

    1.大部分社交平台接口不支持https协议. 问题描述:在iOS9下,系统默认会拦截对http协议接口的访问,因此无法获取http协议接口的数据.对ShareSDK来说,具体表现可能是,无法授权.分享 ...

  8. 【剑指Offer学习】【面试题58:二叉树的下一个结点】

    题目:给定一棵二叉树和当中的一个结点.怎样找出中序遍历顺序的下一个结点?树中的结点除了有两个分别指向左右子结点的指针以外,另一个指向父节点的指针. 解题思路 假设一个结点有右子树.那么它的下一个结点就 ...

  9. hunnu--11548--找啊找啊找朋友

    找啊找啊找朋友 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 14,  ...

  10. LoadRunner性能测试过程/流程

    用LoadRunner进行负载测试的流程通常由五个阶段组成:计划.脚本创建.场景定义.场景执行和结果分析.(1)计划负载测试:定义性能测试要求,例如并发用户的数量.典型业务流程和所需响应时间.(2)创 ...