题目

多组询问,给定一个\(n*m\)的矩阵\(C\)和一个区间\([L,R]\),

问是否存在一个长度为\(n\)的序列\(A\)和一个长度为\(m\)的序列\(B\),

使得所有

\[\frac{A_i}{B_j}C_{i,j}\in [L,R]
\]

不需要输出具体方案


分析

这其实是一个不等式,变量是\(A_i\)和\(B_j\),这样可以化简成

\[\frac{L}{C_{i,j}}\leq \frac{A_i}{B_j}\leq \frac{R}{C_{i,j}}
\]

这样不够好做,考虑把它化成对数的形式,即是

\[\log(L)-\log(C_{i,j})\leq \log(A_i)-\log(B_j)\leq \log(R)-\log(C_{i,j})
\]

按照这个建图判断有没有负环即可,有负环就是无解

但是bfs版的spfa会TLE,考虑SLF优化,只跑了700ms(但是这样更容易被卡掉)


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <deque>
#define rr register
using namespace std;
const int N=811; deque<int>q;
int v[N],cnt[N],as[N],S,n,m,et; double dis[N],l,r;
struct node{int y; double w; int next;}e[N*N>>1];
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void add(int x,int y,double w){
e[++et]=(node){y,w,as[x]},as[x]=et;
}
inline bool spfa(){
while (!q.empty()) q.pop_front();
for (rr int i=1;i<=S;++i)
dis[i]=1e18,v[i]=cnt[i]=0;
q.push_back(S); dis[S]=0,v[S]=1;
while (!q.empty()){
rr int x=q.front(); q.pop_front();
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]>dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
if (++cnt[e[i].y]>=S) return 0;
if (!v[e[i].y]){
v[e[i].y]=1;
if (!q.empty()&&dis[e[i].y]<dis[q.front()]) q.push_front(e[i].y);
else q.push_back(e[i].y);
}
}
v[x]=0;
}
return 1;
}
signed main(){
while (scanf("%d",&n)==1){
m=iut(),S=n+m+1,et=0,
l=log(iut()),r=log(iut());
for (rr int i=1;i<=S;++i) as[i]=0;
for (rr int i=1;i<S;++i) add(S,i,0);
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j){
rr double x=log(iut());
add(i,j+n,r-x),add(j+n,i,x-l);
}
puts(spfa()?"YES":"NO");
}
return 0;
}

#差分约束系统,Spfa,SLF优化#HDU 3666 THE MATRIX PROBLEM的更多相关文章

  1. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  3. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  5. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  6. [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  7. spfa + slf优化

    最近在练习费用流 , 不是要用spfa吗 ,我们教练说:ns学生写朴素的spfa说出去都让人笑 . QwQ,所以就去学了一下优化 . slf优化就是双向队列优化一下,本来想用lll优化,可是优化后我t ...

  8. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  9. 【差分约束系统/SPFA】POJ3169-Layout

    [题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...

  10. 初识费用流 模板(spfa+slf优化) 餐巾计划问题

    今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...

随机推荐

  1. 使用Java线程同步工具类CountDownLatch

    java.util.concurrent.CountDownLatch是Java并发并发编程中的线程同步工具类,基于AQS(java.util.concurrent.locks.AbstractQue ...

  2. 常用JDBC连接池

    如下整理常用JDBC连接池组件. HikariCP 针对不同的JDK需要引入对应的HikariCP,详见:Github项目地址 . 以JDK8为例子,在项目中引入如下依赖: <dependenc ...

  3. 公司服务器建站笔记(三):腾讯云服务器CentOS8.2安装界面环境,使用vnc远程登陆并搭建轻量级Qt服务器

    前言   有些小项目可能只有几个点,几十个点,几百个点,这个时候使用qt的tcp服务器或者mqtt或者websocket等相关服务就可以满足,腾讯云CentOs8.2服务器安装的是没有界面的版本,本篇 ...

  4. time模块,os操作系统及os模块和shutil模块用法---day16

    1.时间模块 import time time.time() 获取本地时间戳 localtime() 获取本地时间元组,参数是时间戳,默认不写是当前 ***** mktime() 通过时间元组获取时间 ...

  5. 前端面试题(四)—— 事件委托(Event Delegation)

    一.什么是事件委托 事件委托(Event Delegation)是一种常用的技术. 它利用事件冒泡的特性,在父元素上监听事件,而不是在子元素上直接添加事件监听器. 通过在父元素上捕获事件,然后根据事件 ...

  6. Gitlab中的打包作业完成后,更新http服务器里的版本号文件

    背景 在.gitlab-ci.yml里面,我们有4个场景 dotnet build.dotnet pack和dotnet push 单元测试 SSH到http服务器,更新对应的版本号文件里面的版本数字 ...

  7. Oracle触发器联合唯一约束

    Oracle支持可为空字端的唯一约束呢?下面就是用触发器作出的限制语句,仅供参考: CREATE OR REPLACE TRIGGER Tg_Completion_Test BEFORE INSERT ...

  8. 【Azure Function】示例运行 python durable function(model V2)

    问题描述 参考官方文档(使用 Python 创建你的第一个持久函数:https://learn.microsoft.com/zh-cn/azure/azure-functions/durable/qu ...

  9. 协程的async使用

    async与launch一样都是开启一个协程,但是async会返回一个Deferred对象,该Deferred也是一个job async函数类似于 launch函数.它启动了一个单独的协程,这是一个轻 ...

  10. Java 在三个数字中找出最大值

    1 int aa1 = 11000000; 2 int aa2 = 20000; 3 int aa3 = 6000; 4 5 //第一种 6 int max = (aa1 > aa2)? aa1 ...