AtCoder Beginner Contest 312

A - Chord (atcoder.jp)

#include <bits/stdc++.h>
#define endl '\n' using namespace std; int main() { vector<string> str {"ACE","BDF","CEG","DFA","EGB","FAC","GBD"};
string s;
cin >> s;
if(std::find(str.begin(), str.end(),s) != str.end()){
cout << "Yes" << endl;
}else
cout << "No" << endl; return 0;
}

B - TaK Code (atcoder.jp)

模拟

#include <bits/stdc++.h>
#define endl '\n' using namespace std; int main() { int n,m;
cin >> n >> m;
vector<string> g(n);
for(auto &i : g) cin >> i; auto check = [&](int x, int y){
for(int i = x;i < x + 3;i ++)
for(int j = y;j < y + 3;j ++)
if(g[i][j] != '#' || g[i + 6][j + 6] != '#')
return false; for(int i = 0;i < 4;i ++)
if(g[x + 3][y + i] != '.' || g[x + i][y + 3] != '.' || g[x + 5][y + 5 + i] != '.' || g[x + 5 + i][y + 5] != '.')
return false; return true;
}; for(int i = 0;i <= n - 9;i ++)
for(int j = 0;j <= m - 9;j ++)
if(check(i,j))
cout << i + 1 << ' ' << j + 1 << endl; return 0;
}

C - Invisible Hand (atcoder.jp)

题意:

苹果市场上有\(N\)个卖家和\(M\)个买家。

第 \(i\) 个卖家可能会以 \(A_i\) 日元或更高的价格(日元是日本的货币)卖出一个苹果。

第 \(i\) 个买方可以以 \(B_i\) 日元或更低的价格购买一个苹果。

求满足以下条件的最小整数 \(X\)。

条件:可以用\(X\)日元卖出一个苹果的人数大于或等于可以用\(X\)日元买入一个苹果的人数。

题解:

\(X\)日元能卖出的,则价格\(X\)日元以下的商家也愿意卖出,\(X\)日元能买的,则预算\(X\)日元以上的的买家也能买

若\(X = A_i(1 \leq i \leq N) = B_j(1 \leq j\leq M)\),也就是要满足\(M - j \leq i\),就是说在\(A + B\)里寻找第\(M\)小的即可,

当然当所有卖家的意愿价格大于了所有买家的的预算,就说明没人愿意卖也没人愿意买,这时候最小\(X\)就是\(B\)里买家的最大预算+1,所以我们把\(A\)和\(B\)和并的时候直接把\(B\)中所有元素都+1即可.

#include <bits/stdc++.h>
#define endl '\n' using namespace std; int main() { int n,m;
cin >> n >> m;
vector<int> a(n + m);
for(int i = 0;i < n;i ++)
cin >> a[i];
for(int i = 0;i < m;i ++){
cin >> a[i + n];
a[i + n]++;
} nth_element(a.begin(),a.begin() + m - 1,a.end());
cout << a[m - 1] << endl;//从0开始的所以是m - 1 return 0;
}

AtCoder Beginner Contest 312的更多相关文章

  1. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  2. AtCoder Beginner Contest 052

    没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...

  3. AtCoder Beginner Contest 053 ABCD题

    A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...

  4. AtCoder Beginner Contest 136

    AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...

  5. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  6. AtCoder Beginner Contest 076

    A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...

  7. AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】

    AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...

  8. AtCoder Beginner Contest 064 D - Insertion

    AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...

  9. AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle【暴力】

    AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle 我要崩溃,当时还以为是需要什么离散化的,原来是暴力,特么五层循环....我自己写怎么都 ...

  10. AtCoder Beginner Contest 075 C bridge【图论求桥】

    AtCoder Beginner Contest 075 C bridge 桥就是指图中这样的边,删除它以后整个图不连通.本题就是求桥个数的裸题. dfn[u]指在dfs中搜索到u节点的次序值,low ...

随机推荐

  1. PackageScanner

    package com.cmb.cox.utils;import com.alibaba.fastjson.JSON;import com.alibaba.fastjson.JSONObject;im ...

  2. 01-前端开发Vscode插件配置

    01 自动保存配置 02 空格渲染方式 配置好以后,可以看到代码的空格有几个,以点的方式呈现,1个点表示1个空格 03 图标插件 VSCode Great Icons 04 缩进 推荐使用2 05 v ...

  3. python 无监督生成模型

    无监督生成模型在机器学习中扮演着重要角色,特别是当我们在没有标签数据的情况下想要生成新的样本或理解数据的内在结构时.一种流行的无监督生成模型是生成对抗网络(Generative Adversarial ...

  4. centos如何统计磁盘使用总量,以及cpu使用率

    剩余硬盘容量 T: df | awk '{print $4}' |sed 's/Available//g' |sed '/^\s*$/d' | awk '{sum+=$1} END {print su ...

  5. 3562-IgH EtherCAT主站开发案例

  6. 嵌入式HLS 案例开发步骤分享——基于Zynq-7010/20工业开发板(1)

    目 录 前 言 3 1 HLS 开发流程说明 5 1.1 HLS 工程导入 5 1.2 编译与仿真 6 1.3 综合 8 1.4 IP 核封装 10 1.5 IP 核测试 14 前 言 本文主要介绍 ...

  7. require模块化 AMD和CMD

    在CommonJS中,有一个全局性方法require(),用于加载模块.假定有一个数学模块math.js,就可以像下面这样加载. 1 var math = require('math'); 然后,就可 ...

  8. 动手学深度学习——CNN应用demo

    CNN应用demo CNN实现简单的手写数字识别 import torch import torch.nn.functional as F from torchvision import datase ...

  9. CF620E

    题目 CF620E 思路 这个题是一个在树上操作的题,每次操作的对象都是以一个结点为根的子树,在1e5的操作下暴力做法必然会超时 观察到c的范围很小,可以考虑状态压缩 考虑将此问题转化为区间问题,利用 ...

  10. SqlServer内置函数和使用

    聚合函数 -> MAX(字段) -> MIN(字段) -> AVG(字段) •-> 在计算时,对于null的数据不计入总是 -> SUM(字段) -> COUNT( ...