本文分享自华为云社区《使用Python实现深度学习模型:序列到序列模型(Seq2Seq)》,作者: Echo_Wish。

序列到序列(Seq2Seq)模型是一种深度学习模型,广泛应用于机器翻译、文本生成和对话系统等自然语言处理任务。它的核心思想是将一个序列(如一句话)映射到另一个序列。本文将详细介绍 Seq2Seq 模型的原理,并使用 Python 和 TensorFlow/Keras 实现一个简单的 Seq2Seq 模型。

1. 什么是序列到序列模型?

Seq2Seq 模型通常由两个主要部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入序列编码成一个固定长度的上下文向量(context vector),然后解码器根据这个上下文向量生成目标序列。

1.1 编码器(Encoder)

编码器是一个循环神经网络(RNN),如 LSTM 或 GRU,用于处理输入序列,并生成一个上下文向量。这个向量总结了输入序列的全部信息。

1.2 解码器(Decoder)

解码器也是一个 RNN,使用编码器生成的上下文向量作为初始输入,并逐步生成目标序列的每一个元素。

1.3 训练过程

在训练过程中,解码器在每一步生成一个单词,并使用该单词作为下一步的输入。这种方法被称为教师强制(Teacher Forcing)。

2. 使用 Python 和 TensorFlow/Keras 实现 Seq2Seq 模型

我们将使用 TensorFlow/Keras 实现一个简单的 Seq2Seq 模型,进行英法翻译任务。

2.1 安装 TensorFlow

首先,确保安装了 TensorFlow:

pip install tensorflow

2.2 数据准备

我们使用一个简单的英法翻译数据集。每个句子对由英语句子和其对应的法语翻译组成。

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences # 示例数据集
data = [
("Hello, how are you?", "Bonjour, comment ça va?"),
("I am fine.", "Je vais bien."),
("What is your name?", "Quel est ton nom?"),
("Nice to meet you.", "Ravi de vous rencontrer."),
("Thank you.", "Merci.")
] # 准备输入和目标句子
input_texts = [pair[0] for pair in data]
target_texts = ['\t' + pair[1] + '\n' for pair in data] # 词汇表大小
num_words = 10000 # 使用 Keras 的 Tokenizer 对输入和目标文本进行分词和编码
input_tokenizer = Tokenizer(num_words=num_words)
input_tokenizer.fit_on_texts(input_texts)
input_sequences = input_tokenizer.texts_to_sequences(input_texts)
input_sequences = pad_sequences(input_sequences, padding='post') target_tokenizer = Tokenizer(num_words=num_words, filters='')
target_tokenizer.fit_on_texts(target_texts)
target_sequences = target_tokenizer.texts_to_sequences(target_texts)
target_sequences = pad_sequences(target_sequences, padding='post') # 输入和目标序列的最大长度
max_encoder_seq_length = max(len(seq) for seq in input_sequences)
max_decoder_seq_length = max(len(seq) for seq in target_sequences) # 创建输入和目标数据的 one-hot 编码
encoder_input_data = np.zeros((len(input_texts), max_encoder_seq_length, num_words), dtype='float32')
decoder_input_data = np.zeros((len(input_texts), max_decoder_seq_length, num_words), dtype='float32')
decoder_target_data = np.zeros((len(input_texts), max_decoder_seq_length, num_words), dtype='float32') for i, (input_seq, target_seq) in enumerate(zip(input_sequences, target_sequences)):
for t, word_index in enumerate(input_seq):
encoder_input_data[i, t, word_index] = 1
for t, word_index in enumerate(target_seq):
decoder_input_data[i, t, word_index] = 1
if t > 0:
decoder_target_data[i, t-1, word_index] = 1

2.3 构建 Seq2Seq 模型

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense # 编码器
encoder_inputs = Input(shape=(None, num_words))
encoder_lstm = LSTM(256, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_inputs)
encoder_states = [state_h, state_c] # 解码器
decoder_inputs = Input(shape=(None, num_words))
decoder_lstm = LSTM(256, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_words, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs) # 定义模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # 编译模型
model.compile(optimizer='rmsprop', loss='categorical_crossentropy') # 训练模型
model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=64, epochs=100, validation_split=0.2)

2.4 推理模型

为了在预测时生成译文,我们需要单独定义编码器和解码器模型。

# 编码器模型
encoder_model = Model(encoder_inputs, encoder_states) # 解码器模型
decoder_state_input_h = Input(shape=(256,))
decoder_state_input_c = Input(shape=(256,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states
)

2.5 定义翻译函数

我们定义一个函数来使用训练好的模型进行翻译。

def decode_sequence(input_seq):
# 编码输入序列得到状态向量
states_value = encoder_model.predict(input_seq) # 生成的序列初始化一个开始标记
target_seq = np.zeros((1, 1, num_words))
target_seq[0, 0, target_tokenizer.word_index['\t']] = 1. # 逐步生成译文序列
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + states_value) # 取概率最大的词作为下一个词
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_word = target_tokenizer.index_word[sampled_token_index]
decoded_sentence += sampled_word # 如果达到结束标记或者最大序列长度,则停止
if (sampled_word == '\n' or len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True # 更新目标序列
target_seq = np.zeros((1, 1, num_words))
target_seq[0, 0, sampled_token_index] = 1. # 更新状态
states_value = [h, c] return decoded_sentence # 测试翻译
for seq_index in range(10):
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)

3. 总结

在本文中,我们介绍了序列到序列(Seq2Seq)模型的基本原理,并使用 Python 和 TensorFlow/Keras 实现了一个简单的英法翻译模型。希望这篇教程能帮助你理解 Seq2Seq 模型的工作原理和实现方法。随着对 Seq2Seq 模型的理解加深,你可以尝试实现更复杂的模型和任务,例如注意力机制和更大规模的数据集。

点击关注,第一时间了解华为云新鲜技术~

使用Python实现深度学习模型:序列到序列模型(Seq2Seq)的更多相关文章

  1. 从Theano到Lasagne:基于Python的深度学习的框架和库

    从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...

  2. 学习Keras:《Keras快速上手基于Python的深度学习实战》PDF代码+mobi

    有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统 ...

  3. 机器学习python*(深度学习)核心技术实战

    Python实战及机器学习(深度学习)技术 一,时间地点:2020年01月08日-11日 北京(机房上课,每人一台电脑进行实际案例操作,赠送 U盘拷贝资料及课件和软件)二.课程目标:1.python基 ...

  4. NLP与深度学习(四)Transformer模型

    1. Transformer模型 在Attention机制被提出后的第3年,2017年又有一篇影响力巨大的论文由Google提出,它就是著名的Attention Is All You Need[1]. ...

  5. Python TensorFlow深度学习回归代码:DNNRegressor

      本文介绍基于Python语言中TensorFlow的tf.estimator接口,实现深度学习神经网络回归的具体方法. 目录 1 写在前面 2 代码分解介绍 2.1 准备工作 2.2 参数配置 2 ...

  6. Matlab和Python用于深度学习应用研究哪个好?

    Matlab和Python都有一些关于深度学习的开源的解决方案(caffe\DeepMind\TensorFlow),基于哪个开展应用研究好?

  7. Python 实现深度学习

    前言 最近由于疫情被困在家,于是准备每天看点专业知识,准备写成博客,不定期发布. 博客大概会写5~7篇,主要是"解剖"一些深度学习的底层技术.关于深度学习,计算机专业的人多少都会了 ...

  8. 人工智能新手入门学习路线和学习资源合集(含AI综述/python/机器学习/深度学习/tensorflow)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工 ...

  9. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  10. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

随机推荐

  1. 牛客网-SQL专项训练15

    ①MySQL是一种(关系型)数据库管理系统. 关系型数据库的代表包括Oracle, Sql Server, MySQL. ②小李在创建完一张数据表后,发现少创建了一列,此时需要修改表结构,应该用哪个语 ...

  2. 跨模态学习能力再升级,EasyNLP电商文图检索效果刷新SOTA

    简介: 本⽂简要介绍我们在电商下对CLIP模型的优化,以及上述模型在公开数据集上的评测结果.最后,我们介绍如何在EasyNLP框架中调用上述电商CLIP模型. 作者:熊兮.欢夏.章捷.临在 导读 多模 ...

  3. JDBC 在性能测试中的应用

    简介: 我们能否绕开 http 协议,直接测试数据库的性能?是否觉得从数据库中导出 CSV 文件来构造压测数据很麻烦?怎样在压测结束后做数据清理?能不能通过数据库中的插入(删除)记录对压测请求做断言? ...

  4. 从KPI到OKR,高阶产品人如何推动业务高速增长

    简介: 不管是核心大目标,还是O(Objectives),或者北极星指标,奇妙等式等等,最后都需要核心组织协同方式来推动整个目标聚焦以及过程的落地. 作为产品经理人,相信很多人都遇到过以下的灵魂拷问: ...

  5. 基于Confluent+Flink的实时数据分析最佳实践

    简介:在实际业务使用中,需要经常实时做一些数据分析,包括实时PV和UV展示,实时销售数据,实时店铺UV以及实时推荐系统等,基于此类需求,Confluent+实时计算Flink版是一个高效的方案. 业务 ...

  6. Service Mesh 从“趋势”走向“无聊”

    简介: 过去一年,阿里巴巴在 Service Mesh 的探索道路上依旧扎实前行,这种坚定并非只因坚信 Service Mesh 未来一定是云计算基础技术的关键组成部分,还因需要借这一技术趋势去偿还过 ...

  7. KubeVela 上手(1)|让云端应用交付更加丝滑

    简介: KubeVela 是阿里云和微软共同发起的 OAM(Open Application Model)标准的技术实现,旨在打造统一.标准.跨环境的云端应用交付,省时省力,轻松简单 作者|KubeV ...

  8. WPF开源轻便、快速的桌面启动器

    前言 今天大姚给大家分享一款WPF开源.简单.轻便.快速的桌面启动器(支持多主题.多语言:简体中文.繁体中文.英文等):CurvaLauncher. WPF介绍 WPF 是一个强大的桌面应用程序框架, ...

  9. [FE] 浅谈 Chakra UI 的现代化浅封装 - 语义化大行其道

      Web2.0 发展至今,网页元素越来越丰富和多样化,数据越来越多. 从需求上来说,也已经不再是展示简单个静态网页,高效的开发交互.打通后端数据,产生了 React 和 Vue 两个著名框架. Re ...

  10. [FAQ] WPS 服务程序是一种流氓软件吗

    是的,周而复始的后台进程,频率大致是每隔一个小时会运行一个购物车图标的后台程序,点击之后就会打开电商网站,随后这个程序消失.再出现. 当前时间:2021-10-29 Other:[FAQ] 你所看过的 ...