Python 爬虫进阶五之多线程的用法

作者 崔庆才   发表于 2016-11-03   分类于 Python   阅读次数: 60553   本文字数: 7.5k   阅读时长 ≈ 7 分钟

前言

我们之前写的爬虫都是单个线程的?这怎么够?一旦一个地方卡到不动了,那不就永远等待下去了?为此我们可以使用多线程或者多进程来处理。 首先声明一点! 多线程和多进程是不一样的!一个是 thread 库,一个是 multiprocessing 库。而多线程 thread 在 Python 里面被称作鸡肋的存在!而没错!本节介绍的是就是这个库 thread。 不建议你用这个,不过还是介绍下了,如果想看可以看看下面,不想浪费时间直接看 multiprocessing 多进程

鸡肋点

名言:

“Python 下多线程是鸡肋,推荐使用多进程!”

那当然有同学会问了,为啥?

背景

1、GIL 是什么? GIL 的全称是 Global Interpreter Lock (全局解释器锁),来源是 python 设计之初的考虑,为了数据安全所做的决定。 2、每个 CPU 在同一时间只能执行一个线程(在单核 CPU 下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。) 在 Python 多线程下,每个线程的执行方式:

  • 获取 GIL
  • 执行代码直到 sleep 或者是 python 虚拟机将其挂起。
  • 释放 GIL

可见,某个线程想要执行,必须先拿到 GIL,我们可以把 GIL 看作是 “通行证”,并且在一个 python 进程中,GIL 只有一个。拿不到通行证的线程,就不允许进入 CPU 执行。 在 Python2.x 里,GIL 的释放逻辑是当前线程遇见 IO 操作或者 ticks 计数达到 100(ticks 可以看作是 Python 自身的一个计数器,专门做用于 GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。 而每次释放 GIL 锁,线程进行锁竞争、切换线程,会消耗资源。并且由于 GIL 锁存在,python 里一个进程永远只能同时执行一个线程 (拿到 GIL 的线程才能执行),这就是为什么在多核 CPU 上,python 的多线程效率并不高。

那么是不是 python 的多线程就完全没用了呢?

在这里我们进行分类讨论: 1、CPU 密集型代码 (各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks 计数很快就会达到阈值,然后触发 GIL 的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以 python 下的多线程对 CPU 密集型代码并不友好。 2、IO 密集型代码 (文件处理、网络爬虫等),多线程能够有效提升效率 (单线程下有 IO 操作会进行 IO 等待,造成不必要的时间浪费,而开启多线程能在线程 A 等待时,自动切换到线程 B,可以不浪费 CPU 的资源,从而能提升程序执行效率)。所以 python 的多线程对 IO 密集型代码比较友好。 而在 python3.x 中,GIL 不使用 ticks 计数,改为使用计时器(执行时间达到阈值后,当前线程释放 GIL),这样对 CPU 密集型程序更加友好,但依然没有解决 GIL 导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

多核性能

多核多线程比单核多线程更差,原因是单核下多线程,每次释放 GIL,唤醒的那个线程都能获取到 GIL 锁,所以能够无缝执行,但多核下,CPU0 释放 GIL 后,其他 CPU 上的线程都会进行竞争,但 GIL 可能会马上又被 CPU0 拿到,导致其他几个 CPU 上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸 (thrashing),导致效率更低

多进程为什么不会这样?

每个进程有各自独立的 GIL,互不干扰,这样就可以真正意义上的并行执行,所以在 python 中,多进程的执行效率优于多线程 (仅仅针对多核 CPU 而言)。 所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率。 所以,如果不想浪费时间,可以直接看多进程。

直接利用函数创建多线程

Python 中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用 thread 模块中的 start_new_thread () 函数来产生新线程。语法如下:

1
thread.start_new_thread(function, args[, kwargs])

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个 tuple 类型。
  • kwargs - 可选参数。

先用一个实例感受一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# -*- coding: UTF-8 -*-

import thread
import time # 为线程定义一个函数
def print_time(threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % (threadName, time.ctime(time.time())) # 创建两个线程
try:
thread.start_new_thread(print_time, ("Thread-1", 2,))
thread.start_new_thread(print_time, ("Thread-2", 4,))
except:
print "Error: unable to start thread" while 1:
pass print "Main Finished"

运行结果如下:

1
2
3
4
5
6
7
8
9
10
Thread-1: Thu Nov  3 16:43:01 2016
Thread-2: Thu Nov 3 16:43:03 2016
Thread-1: Thu Nov 3 16:43:03 2016
Thread-1: Thu Nov 3 16:43:05 2016
Thread-2: Thu Nov 3 16:43:07 2016
Thread-1: Thu Nov 3 16:43:07 2016
Thread-1: Thu Nov 3 16:43:09 2016
Thread-2: Thu Nov 3 16:43:11 2016
Thread-2: Thu Nov 3 16:43:15 2016
Thread-2: Thu Nov 3 16:43:19 2016

可以发现,两个线程都在执行,睡眠 2 秒和 4 秒后打印输出一段话。 注意到,在主线程写了

1
2
while 1:
pass

这是让主线程一直在等待 如果去掉上面两行,那就直接输出

1
Main Finished

程序执行结束。

使用 Threading 模块创建线程

使用 Threading 模块创建线程,直接从 threading.Thread 继承,然后重写 init 方法和 run 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/python
# -*- coding: UTF-8 -*- import threading
import time import thread exitFlag = 0 class myThread (threading.Thread): #继承父类threading.Thread
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self): #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name def print_time(threadName, delay, counter):
while counter:
if exitFlag:
thread.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1 # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启线程
thread1.start()
thread2.start() print "Exiting Main Thread"

运行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Starting Thread-1Starting Thread-2

Exiting Main Thread
Thread-1: Thu Nov 3 18:42:19 2016
Thread-2: Thu Nov 3 18:42:20 2016
Thread-1: Thu Nov 3 18:42:20 2016
Thread-1: Thu Nov 3 18:42:21 2016
Thread-2: Thu Nov 3 18:42:22 2016
Thread-1: Thu Nov 3 18:42:22 2016
Thread-1: Thu Nov 3 18:42:23 2016
Exiting Thread-1
Thread-2: Thu Nov 3 18:42:24 2016
Thread-2: Thu Nov 3 18:42:26 2016
Thread-2: Thu Nov 3 18:42:28 2016
Exiting Thread-2

有没有发现什么奇怪的地方?打印的输出格式好奇怪。比如第一行之后应该是一个回车的,结果第二个进程就打印出来了。 那是因为什么?因为这几个线程没有设置同步。

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。 使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下: 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。 考虑这样一种情况:一个列表里所有元素都是 0,线程”set” 从后向前把所有元素改成 1,而线程”print” 负责从前往后读取列表并打印。 那么,可能线程”set” 开始改的时候,线程”print” 便来打印列表了,输出就成了一半 0 一半 1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。 锁有两种状态 —— 锁定和未锁定。每当一个线程比如”set” 要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print” 获得锁定了,那么就让线程”set” 暂停,也就是同步阻塞;等到线程”print” 访问完毕,释放锁以后,再让线程”set” 继续。 经过这样的处理,打印列表时要么全部输出 0,要么全部输出 1,不会再出现一半 0 一半 1 的尴尬场面。 看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: UTF-8 -*-

import threading
import time class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
threadLock.acquire()
print_time(self.name, self.counter, 3)
# 释放锁
threadLock.release() def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1 threadLock = threading.Lock()
threads = [] # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启新线程
thread1.start()
thread2.start() # 添加线程到线程列表
threads.append(thread1)
threads.append(thread2) # 等待所有线程完成
for t in threads:
t.join() print "Exiting Main Thread"

在上面的代码中运用了线程锁还有 join 等待。 运行结果如下:

1
2
3
4
5
6
7
8
9
Starting Thread-1
Starting Thread-2
Thread-1: Thu Nov 3 18:56:49 2016
Thread-1: Thu Nov 3 18:56:50 2016
Thread-1: Thu Nov 3 18:56:51 2016
Thread-2: Thu Nov 3 18:56:53 2016
Thread-2: Thu Nov 3 18:56:55 2016
Thread-2: Thu Nov 3 18:56:57 2016
Exiting Main Thread

这样一来,你可以发现就不会出现刚才的输出混乱的结果了。

线程优先级队列

Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括 FIFO(先入先出) 队列 Queue,LIFO(后入先出)队列 LifoQueue,和优先级队列 PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue 模块中的常用方法:

  • Queue.qsize () 返回队列的大小
  • Queue.empty () 如果队列为空,返回 True, 反之 False
  • Queue.full () 如果队列满了,返回 True, 反之 False
  • Queue.full 与 maxsize 大小对应
  • Queue.get ([block [, timeout]]) 获取队列,timeout 等待时间
  • Queue.get_nowait () 相当 Queue.get (False)
  • Queue.put (item) 写入队列,timeout 等待时间
  • Queue.put_nowait (item) 相当 Queue.put (item, False)
  • Queue.task_done () 在完成一项工作之后,Queue.task_done () 函数向任务已经完成的队列发送一个信号
  • Queue.join () 实际上意味着等到队列为空,再执行别的操作

用一个实例感受一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: UTF-8 -*-

import Queue
import threading
import time exitFlag = 0 class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1 # 创建新线程
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1 # 填充队列
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release() # 等待队列清空
while not workQueue.empty():
pass # 通知线程是时候退出
exitFlag = 1 # 等待所有线程完成
for t in threads:
t.join()
print "Exiting Main Thread"

运行结果:

1
2
3
4
5
6
7
8
9
10
11
12
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-3 processing One
Thread-1 processing Two
Thread-2 processing Three
Thread-3 processing Four
Thread-2 processing Five
Exiting Thread-2
Exiting Thread-3
Exiting Thread-1
Exiting Main Thread

上面的例子用了 FIFO 队列。当然你也可以换成其他类型的队列。

参考文章

  1. http://bbs.51cto.com/thread-1349105-1.html

  2. Python 多线程 | 菜鸟教程

Python 爬虫进阶五之多线程的用法的更多相关文章

  1. Python爬虫进阶五之多线程的用法

    前言 我们之前写的爬虫都是单个线程的?这怎么够?一旦一个地方卡到不动了,那不就永远等待下去了?为此我们可以使用多线程或者多进程来处理. 首先声明一点! 多线程和多进程是不一样的!一个是 thread ...

  2. Python爬虫进阶四之PySpider的用法

    审时度势 PySpider 是一个我个人认为非常方便并且功能强大的爬虫框架,支持多线程爬取.JS动态解析,提供了可操作界面.出错重试.定时爬取等等的功能,使用非常人性化. 本篇内容通过跟我做一个好玩的 ...

  3. Python爬虫进阶六之多进程的用法

    前言 在上一节中介绍了thread多线程库.python中的多线程其实并不是真正的多线程,并不能做到充分利用多核CPU资源. 如果想要充分利用,在python中大部分情况需要使用多进程,那么这个包就叫 ...

  4. Python爬虫利器五之Selenium的用法

    1.简介 Selenium 是什么?一句话,自动化测试工具.它支持各种浏览器,包括 Chrome,Safari,Firefox 等主流界面式浏览器,如果你在这些浏览器里面安装一个 Selenium 的 ...

  5. PYTHON 爬虫笔记五:BeautifulSoup库基础用法

    知识点一:BeautifulSoup库详解及其基本使用方法 什么是BeautifulSoup 灵活又方便的网页解析库,处理高效,支持多种解析器.利用它不用编写正则表达式即可方便实现网页信息的提取库. ...

  6. Python爬虫进阶一之爬虫框架概述

    综述 爬虫入门之后,我们有两条路可以走. 一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展.另一条路便是学习一些优 ...

  7. Python爬虫实战五之模拟登录淘宝并获取所有订单

    经过多次尝试,模拟登录淘宝终于成功了,实在是不容易,淘宝的登录加密和验证太复杂了,煞费苦心,在此写出来和大家一起分享,希望大家支持. 温馨提示 更新时间,2016-02-01,现在淘宝换成了滑块验证了 ...

  8. Python爬虫进阶三之Scrapy框架安装配置

    初级的爬虫我们利用urllib和urllib2库以及正则表达式就可以完成了,不过还有更加强大的工具,爬虫框架Scrapy,这安装过程也是煞费苦心哪,在此整理如下. Windows 平台: 我的系统是 ...

  9. Python爬虫利器六之PyQuery的用法

    前言 你是否觉得 XPath 的用法多少有点晦涩难记呢? 你是否觉得 BeautifulSoup 的语法多少有些悭吝难懂呢? 你是否甚至还在苦苦研究正则表达式却因为少些了一个点而抓狂呢? 你是否已经有 ...

  10. Python爬虫入门五之URLError异常处理

    大家好,本节在这里主要说的是URLError还有HTTPError,以及对它们的一些处理. 1.URLError 首先解释下URLError可能产生的原因: 网络无连接,即本机无法上网 连接不到特定的 ...

随机推荐

  1. C++ 模板的笔记1

    C++模板的笔记1 C++ 函数模板 函数模板的定义 函数模板是一种可以生成不同类型函数的函数声明.函数模板的参数类型不是固定的,而是在调用时由实参类型推导出来. 语法: template <t ...

  2. Android---TextView基础属性 + 跑马灯的三种方式

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout android:layout_wid ...

  3. js收藏网页功能,纠正网上乱转没求证的案例

    网站一般流行以下收藏代码 function AddFavorite(title, url){ try{ //ie收藏 window.external.addFavorite(url, title); ...

  4. Zabbix“专家坐诊”第192期问答汇总

    问题一 Q:请问下,客户机snmptrap发告警为啥server web收不到,关键是snmptrap日志已经收到,zabbix server配置以及开启snmptrap=1 snmptrap=var ...

  5. open cv java 可以 对图片进行分析,得到数据。考试答题卡 2B铅笔涂黑嘎达 识别

    open cv java 可以 对图片进行分析,得到数据.考试答题卡 2B铅笔涂黑嘎达 识别

  6. SecureCRT windows 登录 linux

    SecureCRT是一款支持SSH(SSH1和SSH2)的终端仿真程序,简单地说是Windows下登录UNIX或Linux服务器主机的软件.SecureCRT支持SSH,同时支持Telnet和rlog ...

  7. react build 后,打包后自动将index.html copy 404.html - create-react-app 创建的项目

    起因:build上传gitee,启用路由需要404.html自动跳转 当前环境 create-react-app 搭建的架子 解决方案 由于默认的时候把build.js打包,无法查看,只好eject ...

  8. Linux SVN 拉取代码报错 svn: E210007: Unable to connect to a repository at URL

    原因:Linux缺少组件,导致无法支持 SVN协议 解决办法 yum install -y cyrus-sasl cyrus-sasl-plain cyrus-sasl-ldap

  9. NJUPT自控第一次积分赛的小总结(二)基于simpleFOC的无刷电机控制

    新人一枚,写的比较水,欢迎大佬指正! 先说一下我用的物料与开发环境吧: 无刷电机:makerbase的2804电机(带AS5600磁编码器) 电机驱动板:simpleFOCmini(学校推荐的) 电池 ...

  10. Android保存多张图片到本地

    目录介绍 01.实际开发保存图片遇到的问题 02.直接用http请求图片并保存本地 03.用glide下载图片保存本地 04.如何实现连续保存多张图片 05.关于其他介绍 好消息 博客笔记大汇总[16 ...