0. 数据结构图文解析系列

数据结构系列文章
数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现
数据结构图文解析之:栈的简介及C++模板实现
数据结构图文解析之:队列详解与C++模板实现
数据结构图文解析之:树的简介及二叉排序树C++模板实现.
数据结构图文解析之:AVL树详解及C++模板实现
数据结构图文解析之:二叉堆详解及C++模板实现

1. 二叉堆的定义

二叉堆是一种特殊的堆,二叉堆是完全二叉树或近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。

当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。

2. 二叉堆的存储

二叉堆一般使用数组来表示。请回忆一下二叉树的性质,其中有一条性质:

性质五:如果对一棵有n个节点的完全二叉树的节点按层序编号(从第一层开始到最下一层,每一层从左到右编号,从1开始编号),对任一节点i有:

  1. 如果i=1 ,则节点为根节点,没有双亲。
  2. 如果2 * i > n ,则节点i没有左孩子 ;否则其左孩子节点为2*i . (n为节点总数)
  3. 如果2 * i+1>n ,则节点i没有右孩子;否则其右孩子节点为2*1+1.

简单来说:

  1. 如果根节点在数组中的位置是1,第n个位置的子节点分别在2n 与 2n+1,第n个位置的双亲节点分别在⌊i /2⌋。因此,第1个位置的子节点在2和3.
  2. 如果根节点在数组中的位置是0,第n个位置的子节点分别在2n+1与2n+2,第n个位置的双亲节点分别在⌊(i-1) /2⌋。因此,第0个位置的子节点在1和2.

得益于数组的随机存储能力,我们能够很快确定堆中节点的父节点与子节点。

下面以大顶堆展示一下堆的数组存储。

在本文中,我们以大顶堆为例进行堆的讲解。本文大顶堆的根节点位置为0.

3. 二叉堆的具体实现

在二叉堆上可以进行插入节点、删除节点、取出堆顶元素等操作。

3.1 二叉堆的抽象数据类型

/*大顶堆类定义*/
template <typename T>
class MaxHeap
{
public:
bool insert(T val); //往二叉堆中插入元素
bool remove(T data); //移除元素
void print(); //打印堆
T getTop(); //获取堆顶元素
bool createMaxHeap(T a[], int size);//根据指定的数组来创建一个最大堆 MaxHeap(int cap = 10);
~MaxHeap(); private:
int capacity; //容量,也即是数组的大小
int size; //堆大小,也即是数组中有效元素的个数
T * heap; //底层的数组
private:
void filterUp(int index); //从index所在节点,往根节点调整堆
void filterDown(int begin ,int end ); //从begin所在节点开始,向end方向调整堆
};
  1. 注意capacity与size的区别。capacity指的是数组的固有大小。size值数组中有效元素的个数,有效元素为组成堆的元素。
  2. heap为数组。

3.2 二叉堆的插入

在数组的最末尾插入新节点,然后自下而上地调整子节点与父节点的位置:比较当前结点与父节点的大小,若不满足大顶堆的性质,则交换两节点,从而使当前子树满足二叉堆的性质。时间复杂度为O(logn)。

当我们在上图的堆中插入元素12:

调整过程:

  1. 节点12添加在数组尾部,位置为11;
  2. 节点12的双亲位置为⌊11/2⌋ = 5,即节点6;节点12比节点6大,与节点6交换位置。交换后节点12的位置为5.
  3. 节点12的双亲位置为⌊ 5 /2⌋ = 2,即节点9;节点12比节点9大,与节点9交换位置。交换后节点12的位置为2.
  4. 节点12的双亲位置为⌊2/2⌋ = 1,即节点11;节点12比节点11大,与节点11交换位置。交换后节点12的位置为1.
  5. 12已经到达根节点,调整过程结束。

这个从下到上的调整过程为:

/*从下到上调整堆*/
/*插入元素时候使用*/
template <typename T>
void MaxHeap<T>::filterUp(int index)
{
T value = heap[index]; //插入节点的值,图中的12 while (index > 0) //如果还未到达根节点,继续调整
{
int indexParent = (index -1)/ 2; //求其双亲节点
if (value< heap[indexParent])
break;
else
{
heap[index] = heap[indexParent];
index = indexParent;
}
}
heap[index] = value; //12插入最后的位置
};

在真正编程的时候,为了效率我们不必进行节点的交换,直接用父节点的值覆盖子节点。最后把新节点插入它最后的位置即可。

基于这个调整函数,我们的插入函数为:

/*插入元素*/
template <typename T>
bool MaxHeap<T>::insert(T val)
{
if (size == capacity) //如果数组已满,则返回false
return false;
heap[size] = val;
filterUp(size);
size++;
return true;
};

3.3 二叉堆的删除

堆的删除是这样一个过程:用数组最末尾节点覆盖被删节点,再从该节点从上到下调整二叉堆。我们删除根节点12:

可能有人疑惑,删除后数组最末尾不是多了一个6吗?

的确,但我们把数组中有效元素的个数减少了一,最末尾的6并不是堆的组成元素。

这个从上到下的调整过程为:

/*从上到下调整堆*/
/*删除元素时候使用*/
template<typename T>
void MaxHeap<T>::filterDown(int current,int end)
{ int child = current * 2 + 1; //当前结点的左孩子 T value = heap[current]; //保存当前结点的值 while (child <= end)
{
if (child < end && heap[child] < heap[child+1])//选出两个孩子中较大的孩子
child++;
if (value>heap[child]) //无须调整;调整结束
break;
else
{
heap[current] = heap[child]; //孩子节点覆盖当前结点
current = child; //向下移动
child = child * 2 + 1;
}
}
heap[current] = value;
};

基于调整函数的删除函数:

/*删除元素*/
template<typename T>
bool MaxHeap<T>::remove(T data)
{
if (size == 0) //如果堆是空的
return false;
int index;
for (index = 0; index < size; index++) //获取值在数组中的索引
{
if (heap[index] == data)
break;
}
if (index == size) //数组中没有该值
return false; heap[index] = heap[size - 1]; //使用最后一个节点来代替当前结点,然后再向下调整当前结点。 filterDown(index,size--); return true;
};

3.4 其余操作

其余操作很简单,不在这里啰嗦。

/*打印大顶堆*/
template <typename T>
void MaxHeap<T>::print()
{
for (int i = 0; i < size; i++)
cout << heap[i] << " ";
};
/*获取堆顶元素*/
template <typename T>
T MaxHeap<T>::getTop()
{
if (size != 0)
return heap[0];
}; /*根据指定的数组来创建一个最大堆*/
template<typename T>
bool MaxHeap<T>::createMapHeap(T a[], int size)
{
if (size > capacity) // 堆的容量不足以创建
return false;
for (int i = 0; i < size; i++)
{
insert(a[i]);
}
return true;
};

4. 二叉堆代码测试

测试代码:

int _tmain(int argc, _TCHAR* argv[])
{
MaxHeap<int> heap(11);
//逐个元素构建大顶堆
for (int i = 0; i < 10; i++)
{
heap.insert(i);
}
heap.print();
cout << endl;
heap.remove(8);
heap.print();
cout << endl; //根据指定的数组创建大顶堆
MaxHeap<int> heap2(11);
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
heap2.createMaxHeap(a, 10);
heap2.print();
getchar();
return 0;
}

运行结果:

9 8 5 6 7 1 4 0 3 2
9 7 5 6 2 1 4 0 3
10 9 6 7 8 2 5 1 4 3

5. 大顶堆、小顶堆完整代码下载

二叉堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MaxHeap/MaxHeap/MaxHeap.h

小顶堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MinHeap/MinHeap/MinHeap.h

原创文章,转载请注明出处:http://www.cnblogs.com/QG-whz/p/5173112.html

数据结构图文解析之:二叉堆详解及C++模板实现的更多相关文章

  1. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  2. 数据结构图文解析之:树的简介及二叉排序树C++模板实现.

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  3. 二叉搜索树详解(Java实现)

    1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...

  4. AVL树(二叉平衡树)详解与实现

    AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...

  5. 数据结构图文解析之:队列详解与C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  6. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. 数据结构图文解析之:直接插入排序及其优化(二分插入排序)解析及C++实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  8. 数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  9. 数据结构图文解析之:栈的简介及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

随机推荐

  1. Linux命令学习总结:cp命令

    命令简介: cp命令用来复制文件或目录.指令英文原义:copy 指令所在路径:/bin/cp 命令语法: Usage: cp [OPTION]... [-T] SOURCE DEST or: cp [ ...

  2. [翻译] 聚集索引表 VS 堆表

    前言: 本文对这篇博客Clustered Tables vs Heap Tables 的翻译, 如有翻译不对或不好的地方,敬请指出,大家一起学习进步. 问题描述 创建一个新表时,一个非常重要的设计原则 ...

  3. 1. 什么是Docker?

    ##### 一.什么是Dokcer?> Docker是一个开源项目, 诞生于2013年初, 最初是dotCloud公司内部的一个业余项目. 它基于Google公司推出的Go语言实现. 项目后来加 ...

  4. hadoop2.2.0伪分布式搭建3--安装Hadoop

    3.1上传hadoop安装包 3.2解压hadoop安装包 mkdir /cloud #解压到/cloud/目录下 tar -zxvf hadoop-2.2.0.tar.gz -C /cloud/ 3 ...

  5. Silicon Labs电视调谐器 si2151

    随着数字电视与数模混合电视在全球范围内的逐步普及,人们对于电视机的功能要求也随之不断攀升,进而对整个电视芯片行业造成了在价格与功耗等方面的强烈冲击. 而中国作为连续四年取得全球电视出货量第一的“电视大 ...

  6. Media Queries 详解

    Media Queries直译过来就是“媒体查询”,在我们平时的Web页面中head部分常看到这样的一段代码:  <link href="css/reset.css" rel ...

  7. libsvm简介和函数调用参数说明

    1.      libSVM简介 libSVM是台湾林智仁(Chih-Jen Lin) 教授2001年开发的一套支持向量机库,这套库运算速度挺快,可以很方便的对数据做分类或回归.由于libSVM程序小 ...

  8. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  9. 第1章Java入门体验

    第1章Java入门体验 1.java简介和平台应用 Java是sun公司开发出来,现在属于ORACLE公司java分为几个部分:首先是最基础的Java SE部分,这部分是Java的基础知识,主要包括: ...

  10. quartz集群分布式(并发)部署解决方案-Spring

    项目中使用分布式并发部署定时任务,多台跨JVM,按照常理逻辑每个JVM的定时任务会各自运行,这样就会存在问题,多台分布式JVM机器的应用服务同时干活,一个是加重服务负担,另外一个是存在严重的逻辑问题, ...