【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想
如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练一个基础分类器,最后将它们的结果综合起来获得最终输出。
1 - 特点
Bagging需要不同的/独立的(diverse/independent)基础模型,因此太过稳定的模型不适合这种集成方法,例如:
- KNN是稳定的
- 决策树是不稳定的,特别是未剪枝的决策树(因为对于每一份数据的拟合可能很不一样)
此外,集成模型的性能在基础模型的数量达到一定规模之后,将收敛。
2 - 随机森林(Random Forest)
一类最经典的Bagging集成模型是随机森林(Random Forest),其中通过如下两个点来确保随机性(即确保不同基础模型之间的差异性):
- 每一棵树都使用一个子数据集进行训练(a bootstrap sample of data)
- 每一个结点的最优分割加入了随机化,具体有如下三种方法
- 从全部的$m$个属性中随机选取$d$个属性,计算它们的信息增益再选择最优的分割;
- 计算$L$个随机属性的线性组合,线性组合的权重从$[-1,1]$中随机采样(这一种方法不太理解);
- 计算全部$m$个属性的信息增益,而后选择最高的$d$个属性,再从中随机选取一个属性进行分割。
3 - 总结
- Bagging的工作原理是减少预测方差
- 假设对于基础模型$i$,其预测错误的概率为$P(h_i(x)\neq f(x))=\epsilon $
- 并且取预测最多的类别最为最终结果,表示为$H(x)=sign\left(\sum_{i=1}^T h_i(x) \right )$
- 那么最终预测错误的概率可以表示为(利用Hoeffding inequality)$P(H(x)\neq f(x))=\sum_{k=0}^{\left \lfloor T/2 \right \rfloor}\binom{T}{k}(1-\epsilon)^k\epsilon^{T-k}\leq exp\left(-\frac{1}{2}T(2\epsilon-1)^2 \right )$
- Bagging很适合并行处理
简单分析预测结果,可以知道Bagging有预测错误概率的上界
【集成模型】Bootstrap Aggregating(Bagging)的更多相关文章
- Bootstrap aggregating Bagging 合奏 Ensemble Neural Network
zh.wikipedia.org/wiki/Bagging算法 Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法,是机器学习领域的一种团体学习算法. ...
- Ensemble Learning: Bootstrap aggregating (Bagging) & Boosting & Stacked generalization (Stacking)
Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...
- 集成学习—boosting和bagging异同
集成学习 集成学习通过构建并结合多个学习器来完成学习任务.只包含同种类型的个体学习器,这样的集成是“同质”的:包含不同类型的个体学习器,这样的集成是“异质”的.集成学习通过将多个学习器进行结合,常可获 ...
- 常用的模型集成方法介绍:bagging、boosting 、stacking
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- bootstrap, boosting, bagging 几种方法的联系
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...
- 集成学习—boosting和bagging
集成~bagging~权值~组合~抽样~样例~基本~并行 一.简介 集成学习通过构建并结合多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能 根据个体学习器的生成方式,目前的集成学习方法 ...
- (转)关于bootstrap, boosting, bagging,Rand forest
转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...
- bootstrap, boosting, bagging
介绍boosting算法的资源: 视频讲义.介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/ 在这个站 ...
随机推荐
- 助教培训第四次作业——熟练掌握GitHub及Git的使用方法
助教培训第四次作业——熟练掌握GitHub及Git的使用方法 1.Git 命令的理解和使用 常用的Git命令可以查看官方文档,官方文档的网址:https://git-scm.com/docs .虽然是 ...
- orm多表查询基于双下划线
###########基于双下划线的跨表查询(基于join实现的)############# key: 正向查询按字段,反向查询按表名小写 1.查询python这本书出版社的名字 ret = Book ...
- Python调用R编程——rpy2
在Python调用R,最常见的方式是使用rpy2模块. 简介 模块 The package is made of several sub-packages or modules: rpy2.rinte ...
- 我花了2个月时间,整理了100篇Linux技术精华,技术人必看
一个以技术为立身根基的教育机构做出来的微信号,干货程度会有多高? 马哥Linux运维公众号运营五年,从一开始的定位就是给技术人分享加薪干货的地方.这五年里,公众号运营最重的任务就是做内容.内容并不好做 ...
- 03 Spring对Bean的管理
Spring创建bean的三种方式 1.第一种方式:使用默认构造函数创建 bean.xml <?xml version="1.0" encoding="UTF-8& ...
- 阿里 Linux服务器外网无法连接MySQL解决方法
我的服务器买的是阿里云ECS linux系统.为了更好的操作数据库,我希望可以用navicat for mysql管理我的数据库. 当我按照正常的模式去链接mysql的时候, 报错提示: 2003- ...
- Mybatis之动态SQL&OGNL表达式
1.接口 public interface MemberMapperDynamicSQL { public List<Members> selectMembersByIf(Members ...
- [cf920G][容斥原理+二分]
https://codeforc.es/contest/920/problem/G G. List Of Integers time limit per test 5 seconds memory l ...
- sql的九个常用语句是什么
一.基础1.说明:创建数据库CREATE DATABASE database-name2.说明:删除数据库drop database dbname3.说明:备份sql server--- 创建 备份数 ...
- MongoDB 集合与文档操作
一.创建DB 1.查看DB >show dbs 2.创建DB >use mydb 3.查看当前DB >db 4.删除DB >use mydb >db.dropDataba ...