感觉有点奇怪的是这题明明是n^2的复杂度,n=1e6竟然能过= =。应该是数据水了。

  dp[i][j]表示前j个数,分成i段,且最后一段的最后一个为a[j]的答案。那么转移式是:dp[i][j] = max(dp[i][j-1], max{dp[i-1][t]}) + a[j],(i-1<=t<=j-1,j-1>=i)。前者表示在第i段的最后一个加上a[j],后者表示a[j]另起一段。这个dp显然是可以滚动数组的,那么空间是可以接受的。然后后者可以使用一个pre数组来记录之前的最大值。具体见代码:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int N = + ;
const int inf = 2e9; int m,n;
int a[N],dp[N],pre[N]; int main()
{
while(scanf("%d%d",&m,&n) == )
{
for(int i=;i<=n;i++) scanf("%d",a+i);
memset(pre,,sizeof(pre));
int temp;
for(int i=;i<=m;i++)
{
temp = -inf;
for(int j=i;j<=n;j++)
{
// 要加下面这行的特判,因为j和i相等的时候dp[j-1]是前一个i时候的状态
if(j == i) dp[j] = pre[j-] + a[i];
else dp[j] = max(dp[j-], pre[j-]) + a[j];
pre[j-] = temp; // 之所以只能这样更新是因为必须在旧状态的pre用完以后再更新新的pre
temp = max(temp, dp[j]);
}
}
printf("%d\n",temp);
}
return ;
}

  

  有几点想补充的。感觉如果用滚动数组,代码会更容易理解。个人认为上面这个特判不能少,因为j是必须大于i的,虽然少了也能过(应该是数据水了)。

另外,还是觉得这题应当是n^2规模的问题。顺便回顾一下之前一道类似的问题:选k段,每段的长度都为m,求区间的最大和

HDU 1024 Max Sum Plus Plus ——(M段区间的最大和)的更多相关文章

  1. hdu 1024 Max Sum Plus Plus(m段最大和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  2. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  3. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  4. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  5. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  6. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu 1024 Max Sum Plus Plus DP

    Max Sum Plus Plus Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php ...

  8. hdu 1024 Max Sum Plus Plus

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. hdu 1024 Max Sum Plus Plus (子段和最大问题)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. SMTP实现发送邮箱2(封装版)

    SMTP.h #ifndef __SMTP_H__ //避免重复包含 #define __SMTP_H__ #include <iostream> #include <list> ...

  2. [Vue]method与计算属性computed、侦听器watch与计算属性computed的区别

    一.方法method与计算属性computed的区别 方法method:每当触发重新渲染时,调用方法method将总会再次执行函数: 计算属性computed:计算属性computed是基于它们的响应 ...

  3. php对象转换为数组的部分代码

    function object_array($array){ if(is_object($array)){ $array = (array)$array; } if(is_array($array)) ...

  4. js将阿拉伯数字转换成汉字大写

    适用场景:票据,结算凭证等.将任意数字的金额,转换成汉字大写的形式.例如:1234.50 -> 壹仟贰佰叁拾肆圆伍角.壹.贰.叁.肆 直接贴代码,如下: //阿拉伯数字转换成大写汉字 funct ...

  5. VC文件扩展名

    .APS:存放二进制资源的中间文件,VC把当前资源文件转换成二进制格式,并存放在APS文件中,以加快资源装载速度. .BMP:位图资源文件. .BSC:浏览信息文件,由浏览信息维护工具(BSCMAKE ...

  6. JavaSpring【七、AspectJ】

    AspectJ 概念 @AspectJ类似纯Java注解的普通Java类 Spring可以使用AspectJ来作为切入点 AOP在运行时仍是纯SpringAOP,对AspectJ无依赖 配置: 对@A ...

  7. 《数字图像处理(MATLAB)》冈萨雷斯

    <数字图像处理(MATLAB)>冈萨雷斯 未完结! 参考:数字图像处理——https://blog.csdn.net/dujing2019/article/category/8820151 ...

  8. win10家庭版设置移动热点出现“我们无法设置移动热点”

    寝室wifi卡到爆炸,  买了一个360随身WiFi,可是360随身WiFi烧坏了  ...然后我就一个星期没玩游戏了 今天本来想开电脑的wifi试一试,结果发现无法设置热点 纳闷了 百度一下,发现都 ...

  9. idea的使用问题解决

    IDEA集成SVN插件,用的是TortoiseSVN,SVN上明明有别人提交的内容,但是我这里点击Incoming确显示不出来 解决方案:file->Invalidate Cache/Resta ...

  10. 区块链火爆,再不知道Golang就晚了

    Golang,也叫Go语言,是2009年刚刚被发发布的一门新语言. 区块链,是2019年我国提出的新战略. 一个不争的事实就是,大多数从事区块链开发的小伙伴都是用Golang,大多数招聘区块链技术工作 ...