3 基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf
1.MIM攻击的原理
MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关。其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,迭代轮数靠前算出来的梯度对当前的梯度方向影响越小。由于之前的梯度对后面的迭代也有影响,迭代的方向不会跑偏,总体的大方向是对的。
为了加速梯度下降,通过累积损失函数的梯度方向上的矢量,从而(1)稳定更新(2)有助于通过 narrow valleys, small humps and poor local minima or maxima.(大致意思就是,可以有效避免局部最优)
是decay_factor, 另外,在原论文中,每一次迭代对x的导数是直接算的1-范数,然后求平均,但在各个算法库以及论文实现的补充中,并没有求平均,估计这个对结果影响不太大。
2.代码实现
class MomentumIterativeAttack(Attack, LabelMixin):
"""
The L-inf projected gradient descent attack (Dong et al. 2017).
The attack performs nb_iter steps of size eps_iter, while always staying
within eps from the initial point. The optimization is performed with
momentum.
Paper: https://arxiv.org/pdf/1710.06081.pdf
""" def __init__(
self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1.,
eps_iter=0.01, clip_min=0., clip_max=1., targeted=False):
"""
Create an instance of the MomentumIterativeAttack. :param predict: forward pass function.
:param loss_fn: loss function.
:param eps: maximum distortion.
:param nb_iter: number of iterations
:param decay_factor: momentum decay factor.
:param eps_iter: attack step size.
:param clip_min: mininum value per input dimension.
:param clip_max: maximum value per input dimension.
:param targeted: if the attack is targeted.
"""
super(MomentumIterativeAttack, self).__init__(
predict, loss_fn, clip_min, clip_max)
self.eps = eps
self.nb_iter = nb_iter
self.decay_factor = decay_factor
self.eps_iter = eps_iter
self.targeted = targeted
if self.loss_fn is None:
self.loss_fn = nn.CrossEntropyLoss(reduction="sum") def perturb(self, x, y=None):
"""
Given examples (x, y), returns their adversarial counterparts with
an attack length of eps. :param x: input tensor.
:param y: label tensor.
- if None and self.targeted=False, compute y as predicted
labels.
- if self.targeted=True, then y must be the targeted labels.
:return: tensor containing perturbed inputs.
"""
x, y = self._verify_and_process_inputs(x, y) delta = torch.zeros_like(x)
g = torch.zeros_like(x) delta = nn.Parameter(delta) for i in range(self.nb_iter): if delta.grad is not None:
delta.grad.detach_()
delta.grad.zero_() imgadv = x + delta
outputs = self.predict(imgadv)
loss = self.loss_fn(outputs, y)
if self.targeted:
loss = -loss
loss.backward() g = self.decay_factor * g + normalize_by_pnorm(
delta.grad.data, p=1)
# according to the paper it should be .sum(), but in their
# implementations (both cleverhans and the link from the paper)
# it is .mean(), but actually it shouldn't matter delta.data += self.eps_iter * torch.sign(g)
# delta.data += self.eps / self.nb_iter * torch.sign(g) delta.data = clamp(
delta.data, min=-self.eps, max=self.eps)
delta.data = clamp(
x + delta.data, min=self.clip_min, max=self.clip_max) - x rval = x + delta.data
return rval
有人认为,advertorch中在迭代过程中,应该是对imgadv求导,而不是对delta求导,foolbox和cleverhans的实现都是对每一轮的对抗样本求导。
3 基于梯度的攻击——MIM的更多相关文章
- 4.基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是 ...
- 2.基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 1 基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 3.基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 2 基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 5.基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- 基于梯度场和Hessian特征值分别获得图像的方向场
一.我们想要求的方向场的定义为: 对于任意一点(x,y),该点的方向可以定义为其所在脊线(或谷线)位置的切线方向与水平轴之间的夹角: 将一条直线顺时针或逆时针旋转 180°,直线的方向保持不变. 因 ...
- 4 基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- C / C ++ 基于梯度下降法的线性回归法(适用于机器学习)
写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression ...
随机推荐
- Python的f.seek(offset, whence)函数
file.seek()方法标准格式是:seek(offset,whence=0)offset:开始的偏移量,也就是代表需要移动偏移的字节数whence:给offset参数一个定义,表示要从哪个位置开始 ...
- SpringCloud之网关 Gateway(五)
前面我们在聊服务网关Zuul的时候提到了Gateway,那么Zuul和Gateway都是服务网关,这两个有什么区别呢? 1. Zuul和Gateway的恩怨情仇 1.1 背景 Zuul是Netflix ...
- jmeter 5.0,http请求登录返回的cookie在头部处理方法
http登录之后返回的cookie在响应的头部,再次请求虽然加了cookie管理器,但是下一个请求调用响应是登陆失效,这里讲一下我的解决方法 1:在登录之后添加正则表达式,提取cookie 2:提取之 ...
- jquery toggle()方法 语法
jquery toggle()方法 语法 作用:toggle() 方法用于绑定两个或多个事件处理器函数,以响应被选元素的轮流的 click 事件.该方法也可用于切换被选元素的 hide() 与 sho ...
- gulp 使用指南
只放一个链接是不是太不负责任 https://gulpjs.com/ https://blog.csdn.net/guang_s/article/details/84664769 gulp安装过程在此 ...
- Linux 搭建Mysql主从节点复制
Linux环境 Centos 6.6 64位 准备两台服务器,搭建一主一从,实现Mysql的读写分离和数据备份 主节点 192.168.43.10 leader 从节点 192.168.43.20 d ...
- 微信小程序_(组件)可拖动movable-view
微信小程序movable-view组件官方文档 传送门 Learn 一.moveable-view组件 一.movable-view组件 direction:movable-view的移动方向,属性值 ...
- beautifulsoup 安装
pip install beautifulsoup4
- Samba windows 10 share: mount error(112): Host is down
Windows 10 Share File: //10.108.xx.xx/lnxvda-rf/ROBOT [root@rhels73 robot]# mount -t cifs -o usernam ...
- 一、Git的一些命令操作----创建版本库、增加文件到Git库、时光机穿梭、远程仓库
具体详细教程请链接:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 我这里只是记录 ...