3 基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf
1.MIM攻击的原理
MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关。其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,迭代轮数靠前算出来的梯度对当前的梯度方向影响越小。由于之前的梯度对后面的迭代也有影响,迭代的方向不会跑偏,总体的大方向是对的。
为了加速梯度下降,通过累积损失函数的梯度方向上的矢量,从而(1)稳定更新(2)有助于通过 narrow valleys, small humps and poor local minima or maxima.(大致意思就是,可以有效避免局部最优)
是decay_factor, 另外,在原论文中,每一次迭代对x的导数是直接算的1-范数,然后求平均,但在各个算法库以及论文实现的补充中,并没有求平均,估计这个对结果影响不太大。
2.代码实现
class MomentumIterativeAttack(Attack, LabelMixin):
"""
The L-inf projected gradient descent attack (Dong et al. 2017).
The attack performs nb_iter steps of size eps_iter, while always staying
within eps from the initial point. The optimization is performed with
momentum.
Paper: https://arxiv.org/pdf/1710.06081.pdf
""" def __init__(
self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1.,
eps_iter=0.01, clip_min=0., clip_max=1., targeted=False):
"""
Create an instance of the MomentumIterativeAttack. :param predict: forward pass function.
:param loss_fn: loss function.
:param eps: maximum distortion.
:param nb_iter: number of iterations
:param decay_factor: momentum decay factor.
:param eps_iter: attack step size.
:param clip_min: mininum value per input dimension.
:param clip_max: maximum value per input dimension.
:param targeted: if the attack is targeted.
"""
super(MomentumIterativeAttack, self).__init__(
predict, loss_fn, clip_min, clip_max)
self.eps = eps
self.nb_iter = nb_iter
self.decay_factor = decay_factor
self.eps_iter = eps_iter
self.targeted = targeted
if self.loss_fn is None:
self.loss_fn = nn.CrossEntropyLoss(reduction="sum") def perturb(self, x, y=None):
"""
Given examples (x, y), returns their adversarial counterparts with
an attack length of eps. :param x: input tensor.
:param y: label tensor.
- if None and self.targeted=False, compute y as predicted
labels.
- if self.targeted=True, then y must be the targeted labels.
:return: tensor containing perturbed inputs.
"""
x, y = self._verify_and_process_inputs(x, y) delta = torch.zeros_like(x)
g = torch.zeros_like(x) delta = nn.Parameter(delta) for i in range(self.nb_iter): if delta.grad is not None:
delta.grad.detach_()
delta.grad.zero_() imgadv = x + delta
outputs = self.predict(imgadv)
loss = self.loss_fn(outputs, y)
if self.targeted:
loss = -loss
loss.backward() g = self.decay_factor * g + normalize_by_pnorm(
delta.grad.data, p=1)
# according to the paper it should be .sum(), but in their
# implementations (both cleverhans and the link from the paper)
# it is .mean(), but actually it shouldn't matter delta.data += self.eps_iter * torch.sign(g)
# delta.data += self.eps / self.nb_iter * torch.sign(g) delta.data = clamp(
delta.data, min=-self.eps, max=self.eps)
delta.data = clamp(
x + delta.data, min=self.clip_min, max=self.clip_max) - x rval = x + delta.data
return rval
有人认为,advertorch中在迭代过程中,应该是对imgadv求导,而不是对delta求导,foolbox和cleverhans的实现都是对每一轮的对抗样本求导。
3 基于梯度的攻击——MIM的更多相关文章
- 4.基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是 ...
- 2.基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 1 基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 3.基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 2 基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 5.基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- 基于梯度场和Hessian特征值分别获得图像的方向场
一.我们想要求的方向场的定义为: 对于任意一点(x,y),该点的方向可以定义为其所在脊线(或谷线)位置的切线方向与水平轴之间的夹角: 将一条直线顺时针或逆时针旋转 180°,直线的方向保持不变. 因 ...
- 4 基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- C / C ++ 基于梯度下降法的线性回归法(适用于机器学习)
写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression ...
随机推荐
- JProfiler集成在eclipse中(转)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_38259539/articl ...
- jquery toggle()方法 语法
jquery toggle()方法 语法 作用:toggle() 方法用于绑定两个或多个事件处理器函数,以响应被选元素的轮流的 click 事件.该方法也可用于切换被选元素的 hide() 与 sho ...
- html css回顾总结
//html基本结构<!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- XML -- 为什么选择XML?
1.XML是什么,主要功能? XML全称(EXtensible Markup Language),是可扩展性标记语言. XML主要功能是用来传输和存储数据.它就是一种纯文本.只要程序能访问纯文本就能访 ...
- bzoj3307 雨天的尾巴题解及改题过程(线段树合并+lca+树上差分)
题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式 第一行数字N,M接下 ...
- WordPress显示评论者IP归属地、浏览器、终端设备、电信运营商
在网上查资料闲逛,偶然间看到了张戈博客的评论框有点意思,于是就收走拿到了我的米扑博客. 本文为米扑博客原创:总结分享 WordPress显示评论者IP归属地.浏览器.终端设备.电信运营商 WordPr ...
- 使用Hexo和Github搭建博客站
本人电脑系统为window 10专业工作站版,64位 相关步骤: 1.安装Node.js和配置好Node.js环境,打开cmd命令行,成功界面如下 2.安装Git和配置好Git环境,安装成功的象征就是 ...
- AcWing:167. 木棒(dfs + 剪枝)
乔治拿来一组等长的木棒,将它们随机地砍断,使得每一节木棍的长度都不超过50个长度单位. 然后他又想把这些木棍恢复到为裁截前的状态,但忘记了初始时有多少木棒以及木棒的初始长度. 请你设计一个程序,帮助乔 ...
- Java集合框架之LinkedHashSet
简述 LinkedHashSet底层使用 LinkedHashMap 来保存所有元素,它继承自 HashSet,其所有的方法操作上又与 HashSet 相同,因此 LinkedHashSet 的实现上 ...
- HTML标签功能分类
按功能类别对HTML标签进行分类,源自HTML 参考手册 基础 标签 描述 <!DOCTYPE> 定义文档类型. html 定义 HTML 文档. title 定义文档的标题. body ...