Since Kafka Connect is intended to be run as a service, it also supports a REST API for managing connectors. By default this service runs on port 8083. When executed in distributed mode, the REST API will be the primary interface to the cluster. You can make requests to any cluster member; the REST API automatically forwards requests if required.

Although you can use the standalone mode just by submitting a connector on the command line, it also runs the REST interface. This is useful for getting status information, adding and removing connectors without stopping the process, and more.

Currently the top level resources are connector and connector-plugins. The sub-resources for connector lists configuration settings and tasks and the sub-resource for connector-plugins provides configuration validation and recommendation.

Note that if you try to modify, update or delete a resource under connector which may require the request to be forwarded to the leader, Connect will return status code 409 while the worker group rebalance is in process as the leader may change during rebalance.

Content Types

Currently the REST API only supports application/json as both the request and response entity content type. Your requests should specify the expected content type of the response via the HTTP Accept header:

Accept: application/json
Copy

and should specify the content type of the request entity (if one is included) via the Content-Type header:

Content-Type: application/json
Copy

Statuses & Errors

The REST API will return standards-compliant HTTP statuses. Clients should check the HTTP status, especially before attempting to parse and use response entities. Currently the API does not use redirects (statuses in the 300 range), but the use of these codes is reserved for future use so clients should handle them.

When possible, all endpoints will use a standard error message format for all errors (status codes in the 400 or 500 range). For example, a request entity that omits a required field may generate the following response:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json {
"error_code": 422,
"message": "config may not be empty"
}
Copy

Connectors

GET /connectors

Get a list of active connectors

Response JSON Object:
 
  • connectors (array) -- List of connector names

Example request:

GET /connectors HTTP/1.1
Host: connect.example.com
Accept: application/json
Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json ["my-jdbc-source", "my-hdfs-sink"]
Copy
POST /connectors

Create a new connector, returning the current connector info if successful. Return 409 (Conflict) if rebalance is in process.

Request JSON Object:
 
  • name (string) -- Name of the connector to create
  • config (map) -- Configuration parameters for the connector. All values should be strings.
Response JSON Object:
 
  • name (string) -- Name of the created connector
  • config (map) -- Configuration parameters for the connector.
  • tasks (array) -- List of active tasks generated by the connector
  • tasks[i].connector (string) -- The name of the connector the task belongs to
  • tasks[i].task (int) -- Task ID within the connector.

Example request:

POST /connectors HTTP/1.1
Host: connect.example.com
Content-Type: application/json
Accept: application/json {
"name": "hdfs-sink-connector",
"config": {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
}
}
Copy

Example response:

HTTP/1.1 201 Created
Content-Type: application/json {
"name": "hdfs-sink-connector",
"config": {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
},
"tasks": [
{ "connector": "hdfs-sink-connector", "task": 1 },
{ "connector": "hdfs-sink-connector", "task": 2 },
{ "connector": "hdfs-sink-connector", "task": 3 }
]
}
Copy
GET /connectors/(string:name)

Get information about the connector.

Response JSON Object:
 
  • name (string) -- Name of the created connector
  • config (map) -- Configuration parameters for the connector.
  • tasks (array) -- List of active tasks generated by the connector
  • tasks[i].connector (string) -- The name of the connector the task belongs to
  • tasks[i].task (int) -- Task ID within the connector.

Example request:

GET /connectors/hdfs-sink-connector HTTP/1.1
Host: connect.example.com
Accept: application/json
Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json {
"name": "hdfs-sink-connector",
"config": {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
},
"tasks": [
{ "connector": "hdfs-sink-connector", "task": 1 },
{ "connector": "hdfs-sink-connector", "task": 2 },
{ "connector": "hdfs-sink-connector", "task": 3 }
]
}
Copy
GET /connectors/(string:name)/config

Get the configuration for the connector.

Response JSON Object:
 
  • config (map) -- Configuration parameters for the connector.

Example request:

GET /connectors/hdfs-sink-connector/config HTTP/1.1
Host: connect.example.com
Accept: application/json
Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
}
Copy
PUT /connectors/(string:name)/config

Create a new connector using the given configuration, or update the configuration for an existing connector. Returns information about the connector after the change has been made. Return 409 (Conflict) if rebalance is in process.

Request JSON Object:
 
  • config (map) -- Configuration parameters for the connector. All values should be strings.
Response JSON Object:
 
  • name (string) -- Name of the created connector
  • config (map) -- Configuration parameters for the connector.
  • tasks (array) -- List of active tasks generated by the connector
  • tasks[i].connector (string) -- The name of the connector the task belongs to
  • tasks[i].task (int) -- Task ID within the connector.

Example request:

PUT /connectors/hdfs-sink-connector/config HTTP/1.1
Host: connect.example.com
Accept: application/json {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
}
Copy

Example response:

HTTP/1.1 201 Created
Content-Type: application/json {
"name": "hdfs-sink-connector",
"config": {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "10",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
},
"tasks": [
{ "connector": "hdfs-sink-connector", "task": 1 },
{ "connector": "hdfs-sink-connector", "task": 2 },
{ "connector": "hdfs-sink-connector", "task": 3 }
]
}
Copy

Note that in this example the return status indicates that the connector was Created. In the case of a configuration update the status would have been 200 OK.

GET /connectors/(string:name)/status

Get current status of the connector, including whether it is running, failed or paused, which worker it is assigned to, error information if it has failed, and the state of all its tasks.

Response JSON Object:
 
  • name (string) -- The name of the connector.
  • connector (map) -- The map containing connector status.
  • tasks[i] (map) -- The map containing the task status.

Example request:

GET /connectors/hdfs-sink-connector/status HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK

{
"name": "hdfs-sink-connector",
"connector": {
"state": "RUNNING",
"worker_id": "fakehost:8083"
},
"tasks":
[
{
"id": 0,
"state": "RUNNING",
"worker_id": "fakehost:8083"
},
{
"id": 1,
"state": "FAILED",
"worker_id": "fakehost:8083",
"trace": "org.apache.kafka.common.errors.RecordTooLargeException\n"
}
]
}
Copy
POST /connectors/(string:name)/restart

Restart the connector and its tasks. Return 409 (Conflict) if rebalance is in process.

Example request:

POST /connectors/hdfs-sink-connector/restart HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK
Copy
PUT /connectors/(string:name)/pause

Pause the connector and its tasks, which stops message processing until the connector is resumed. This call asynchronous and the tasks will not transition to PAUSED state at the same time.

Example request:

PUT /connectors/hdfs-sink-connector/pause HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 202 Accepted
Copy
PUT /connectors/(string:name)/resume

Resume a paused connector or do nothing if the connector is not paused. This call asynchronous and the tasks will not transition to RUNNINGstate at the same time.

Example request:

PUT /connectors/hdfs-sink-connector/resume HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 202 Accepted
Copy
DELETE /connectors/(string:name)/

Delete a connector, halting all tasks and deleting its configuration. Return 409 (Conflict) if rebalance is in process.

Example request:

DELETE /connectors/hdfs-sink-connector HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 204 No Content
Copy

Tasks

GET /connectors/(string:name)/tasks

Get a list of tasks currently running for the connector.

Response JSON Object:
 
  • tasks (array) -- List of active task configs that have been created by the connector
  • tasks[i].id (string) -- The ID of task
  • tasks[i].id.connector (string) -- The name of the connector the task belongs to
  • tasks[i].id.task (int) -- Task ID within the connector.
  • tasks[i].config (map) -- Configuration parameters for the task

Example request:

GET /connectors/hdfs-sink-connector/tasks HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK

[
{
"task.class": "io.confluent.connect.hdfs.HdfsSinkTask",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
},
{
"task.class": "io.confluent.connect.hdfs.HdfsSinkTask",
"topics": "test-topic",
"hdfs.url": "hdfs://fakehost:9000",
"hadoop.conf.dir": "/opt/hadoop/conf",
"hadoop.home": "/opt/hadoop",
"flush.size": "100",
"rotate.interval.ms": "1000"
}
]
Copy
GET /connectors/(string:name)/tasks/(int:taskid)/status

Get a task's status.

Example request:

GET /connectors/hdfs-sink-connector/tasks/1/status HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK

{"state":"RUNNING","id":1,"worker_id":"192.168.86.101:8083"}
Copy
POST /connectors/(string:name)/tasks/(int:taskid)/restart

Restart an individual task.

Example request:
POST /connectors/hdfs-sink-connector/tasks/1/restart HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK
Copy

Connector Plugins

GET /connector-plugins/

Return a list of connector plugins installed in the Kafka Connect cluster. Note that the API only checks for connectors on the worker that handles the request, which means it is possible to see inconsistent results, especially during a rolling upgrade if you add new connector jars.

Response JSON Object:
 
  • class (string) -- The connector class name.

Example request:

GET /connector-plugins/ HTTP/1.1
Host: connect.example.com
Copy

Example response:

HTTP/1.1 200 OK

[
{
"class": "io.confluent.connect.hdfs.HdfsSinkConnector"
},
{
"class": "io.confluent.connect.jdbc.JdbcSourceConnector"
}
]
Copy
PUT /connector-plugins/(string:name)/config/validate

Validate the provided configuration values against the configuration definition. This API performs per config validation, returns suggested values and error messages during validation.

Request JSON Object:
 
  • config (map) -- Configuration parameters for the connector. All values should be strings.
Response JSON Object:
 
  • name (string) -- The class name of the connector plugin.
  • error_count (int) -- The total number of errors encountered during configuration validation.
  • groups (array) -- The list of groups used in configuration definitions.
  • configs[i].definition (map) -- The definition for a config in the connector plugin, which includes the name, type, importance, etc.
  • configs[i].value (map) -- The current value for a config, which includes the name, value, recommended values, etc.

Example request:

PUT /connector-plugins/FileStreamSinkConnector/config/validate/ HTTP/1.1
Host: connect.example.com
Accept: application/json {
"connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"tasks.max": "1",
"topics": "test-topic"
}
Copy

Example response:HTTP/1.1 200 O

{
"name": "FileStreamSinkConnector",
"error_count": 1,
"groups": [
"Common"
],
"configs": [
{
"definition": {
"name": "topics",
"type": "LIST",
"required": false,
"default_value": "",
"importance": "HIGH",
"documentation": "",
"group": "Common",
"width": "LONG",
"display_name": "Topics",
"dependents": [],
"order": 4
},
"value": {
"name": "topics",
"value": "test-topic",
"recommended_values": [],
"errors": [],
"visible": true
}
},
{
"definition": {
"name": "file",
"type": "STRING",
"required": true,
"default_value": "",
"importance": "HIGH",
"documentation": "Destination filename.",
"group": null,
"width": "NONE",
"display_name": "file",
"dependents": [],
"order": -1
},
"value": {
"name": "file",
"value": null,
"recommended_values": [],
"errors": [
"Missing required configuration \"file\" which has no default value."
],
"visible": true
}
},
{
"definition": {
"name": "name",
"type": "STRING",
"required": true,
"default_value": "",
"importance": "HIGH",
"documentation": "Globally unique name to use for this connector.",
"group": "Common",
"width": "MEDIUM",
"display_name": "Connector name",
"dependents": [],
"order": 1
},
"value": {
"name": "name",
"value": "test",
"recommended_values": [],
"errors": [],
"visible": true
}
},
{
"definition": {
"name": "tasks.max",
"type": "INT",
"required": false,
"default_value": "1",
"importance": "HIGH",
"documentation": "Maximum number of tasks to use for this connector.",
"group": "Common",
"width": "SHORT",
"display_name": "Tasks max",
"dependents": [],
"order": 3
},
"value": {
"name": "tasks.max",
"value": "1",
"recommended_values": [],
"errors": [],
"visible": true
}
},
{
"definition": {
"name": "connector.class",
"type": "STRING",
"required": true,
"default_value": "",
"importance": "HIGH",
"documentation": "Name or alias of the class for this connector. Must be a subclass of org.apache.kafka.connect.connector.Connector. If the connector is org.apache.kafka.connect.file.FileStreamSinkConnector, you can either specify this full name, or use \"FileStreamSink\" or \"FileStreamSinkConnector\" to make the configuration a bit shorter",
"group": "Common",
"width": "LONG",
"display_name": "Connector class",
"dependents": [],
"order": 2
},
"value": {
"name": "connector.class",
"value": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"recommended_values": [],
"errors": [],
"visible": true
}
}
]
} reference:
https://docs.confluent.io/current/connect/references/restapi.html

Kafka Connect REST Interface的更多相关文章

  1. Streaming data from Oracle using Oracle GoldenGate and Kafka Connect

    This is a guest blog from Robin Moffatt. Robin Moffatt is Head of R&D (Europe) at Rittman Mead, ...

  2. Kafka connect in practice(3): distributed mode mysql binlog ->kafka->hive

    In the previous post Kafka connect in practice(1): standalone, I have introduced about the basics of ...

  3. Kafka Connect Architecture

    Kafka Connect's goal of copying data between systems has been tackled by a variety of frameworks, ma ...

  4. Build an ETL Pipeline With Kafka Connect via JDBC Connectors

    This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...

  5. Kafka connect快速构建数据ETL通道

    摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎 ...

  6. 使用kafka connect,将数据批量写到hdfs完整过程

    版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0.kafka-connect是以单节点模式运行,即standalone. 首先, ...

  7. 基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?

    DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多 ...

  8. 基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?

    在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeli ...

  9. 以Kafka Connect作为实时数据集成平台的基础架构有什么优势?

    Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPi ...

随机推荐

  1. 16 关于webpack和npm中几个问题的说明

    1.json里面不能写注释 2.'webpack-dev-server'不是内部或外部命令,也不是可运行的程序或批处理文件. 注意:webpack-dev-server包只需要本地安装就行,不用全局安 ...

  2. pandas 4

    参考资料:https://mp.weixin.qq.com/s/QnxaOrvlWJn6Dr42Ic1CcQ 1  #只选取housing,loan,contac和poutcometest_data[ ...

  3. qsort中的函数指针,及函数解释

    函数指针有何用 函数指针的应用场景比较多,以库函数qsort排序函数为例,它的原型如下: void qsort(void *base,size_t nmemb,size_t size , int(*c ...

  4. ServletRequest、 HttpServletRequest、Request的联系与区别

    一. servlet理论上可以处理多种形式的请求响应形式 http只是其中之一 所以HttpServletRequest HttpServletResponse分别是ServletRequest和Se ...

  5. Python中日志logging模块

    # coding:utf-8 import logging import os import time class Logger(object): def __init__(self): # 创建一个 ...

  6. [Dart] Understand Classes and Inheritance in Dart

    We will look at how we can create classes and explore some various features. Dart adopts a single-in ...

  7. jquery动画函数里面可以跟一个回调函数,表示动画结束后执行的代码

    jquery动画函数里面可以跟一个回调函数,表示动画结束后执行的代码 使用js监听动画结束后进行的操作: $ele.fadeIn(300,function(){...}) $ele.fadeOut(3 ...

  8. Codeforces Round #459 (Div. 2) C题【思维好题--括号匹配问题】

    题意:给出一个串,只包含 ( ? ) 三种符号,求出有多少个子串是完美匹配的. ( ) ? ) => ( ) ( ) 完美匹配( ( ) ? => ( ( ) )完美匹配? ? ? ? = ...

  9. Greenplum 监控segment是否正常

    在greenplum运行过程中,Segement很有可能因为压力大出现不可用的情况, 主备Segement发现了切换,或是主备Segement网络断开,数据不同步了.在 默认情况下,如果GreenPl ...

  10. 011_Python3 集合

    集合(set)是一个无序的不重复元素序列. 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典.   创 ...