CF 666C & 牛客 36D
给定字符串S, 求有多少长为$n$的字符串T, 使得S为T的子序列.
可以得到转移矩阵为
$\begin{equation}
A
=\begin{bmatrix}
25 & 0 & 0 &\cdots\ &0 &0\\
1 & 25 & 0 &\cdots\ &0 &0\\
0 & 1 & 25 & \cdots\ & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots &\vdots\\
0 & 0 & 0 &\cdots\ &1& 26\\
\end{bmatrix}
\end{equation}$
设$|S|=m$, 答案就为$A^n$的$(m,0)$项, 也就是说答案只与$S$的长度有关, 但是用矩阵幂的话复杂度是$O(m^3logn)$显然过不去.
实际上我们可以直接设$f(n)$为长为$n$的字符串的答案, 不去维护匹配的状态.
可以得到$f(n) = \begin{cases} 0, & n< m \\26f(n-1)+25^{n-m}\binom{n-1}{m-1}, & n\ge m \end{cases}$
前一部分表示在前$n-1$位已经有子序列等于$S$的情形, 那么第$n$位可以任取值.
后一部分表示在第$n$位时第一次出现子序列等于$S$的情形, 那么枚举前$m-1$位在$T$中的第一次出现位置, 其余位置可以任取其余的$25$个值.
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e5+10;
int t, clk;
char s[N];
vector<pii> g[N];
int ans[N], f[N];
ll p25[N], fac[N], ifac[N]; ll C(int n, int m) {
return fac[n]*ifac[n-m]%P*ifac[m]%P;
} int main() {
p25[0] = fac[0] = ifac[0] = 1;
REP(i,1,N-1) {
p25[i] = p25[i-1]*25%P;
fac[i] = fac[i-1]*i%P;
ifac[i] = inv(fac[i]);
}
scanf("%d%s", &t, s);
int now = strlen(s);
REP(i,1,t) {
int op, x;
scanf("%d", &op);
if (op==1) scanf("%s", s), now = strlen(s);
else scanf("%d", &x), g[now].pb(pii(x,++clk));
}
REP(i,1,N-1) if (g[i].size()) {
sort(g[i].begin(),g[i].end());
int sz = g[i].size(), now = 0;
while (now<sz&&g[i][now].x<i) ++now;
f[i-1] = 0;
REP(j,i,N-1) {
f[j] = (f[j-1]*26ll+C(j-1,i-1)*p25[j-i])%P;
while (now<sz&&g[i][now].x==j) ans[g[i][now++].y] = f[j];
if (now>=sz) break;
}
}
REP(i,1,clk) printf("%d\n",ans[i]);
}
CF 666C & 牛客 36D的更多相关文章
- 【牛客 错题集】Linux系统方面错题合集
前言:牛客Linux322道全部刷完,有些题目较老,甚至考核5系统,现在7都出来了几年了 = = 还有些题目解析的很好部分也摘录了进来.很多涉及嵌入式开发的选择题同样的摘录的作为了解使用 ------ ...
- 2019牛客第八场多校 E_Explorer 可撤销并查集(栈)+线段树
目录 题意: 分析: @(2019牛客暑期多校训练营(第八场)E_Explorer) 题意: 链接 题目类似:CF366D,Gym101652T 本题给你\(n(100000)\)个点\(m(1000 ...
- 牛客网程序员面试金典:1.1确定字符互异(java实现)
问题描述: 请实现一个算法,确定一个字符串的所有字符是否全都不同.这里我们要求不允许使用额外的存储结构. 给定一个string iniString,请返回一个bool值,True代表所有字符全都不同, ...
- 牛客网 --java问答题
http://www.nowcoder.com/ 主要是自己什么都不怎么会.在这里可以学习很多的! 第一天看题自己回答,第二天看牛客网的答案! 1 什么是Java虚拟机?为什么Java被称作是“平台无 ...
- 【面试笔试算法】牛客网一站通Offer编程题2016.4.19
牛客网一站通offer (一)字符串变形 1. 题目: 对于一个给定的字符串,我们需要在线性(也就是O(n))的时间里对它做一些变形.首先这个字符串中包含着一些空格,就像"Hello Wor ...
- 牛客网《BAT面试算法精品课》学习笔记
目录 牛客网<BAT面试算法精品课>学习笔记 牛客网<BAT面试算法精品课>笔记一:排序 牛客网<BAT面试算法精品课>笔记二:字符串 牛客网<BAT面试算法 ...
- 牛客小白月赛13 小A买彩票 (记忆化搜索)
链接:https://ac.nowcoder.com/acm/contest/549/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...
- 牛客小白月赛13-J小A的数学题 (莫比乌斯反演)
链接:https://ac.nowcoder.com/acm/contest/549/J来源:牛客网 题目描述 小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j ...
- C++版 - HDUoj 2010 3阶的水仙花数 - 牛客网
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - ...
随机推荐
- requests_html使用asyncio
import asyncio import functools from concurrent.futures.thread import ThreadPoolExecutor from reques ...
- IDEA个人常用配置记录
原文 一.常用快捷键 编辑 ⇧ + ↩:开始新的一行 ⌘ + ⇧ + ↩:行内任意位置进行换行,并自动补齐“;”.“{}” ⌘ + ⇧ + U:大小写切换 ⌥ + ⌦:删除到单词的末尾(⌦键为Fn+D ...
- 在debian下安装QT 5.10 32位
准备工作: 在开始之前最好把GCC升级到5.0以上. 如果升级后出现“libstdc++.so.6: version `CXXABI_1.3.9' not found”错误,可以参考https://b ...
- CentOS 上 Jenkins 的安装
Jenkins 的前身是 Hudson. Jenkins 是一款开源 CI&CD 软件,用于自动化各种任务,包括构建.测试和部署软件. Jenkins 支持各种运行方式,可通过系统包.Dock ...
- Node.JS数组及For 语句
for Each语句: var arr = ["Zhang San", "Li Si", "Wang Wu"] arr.forEach(fu ...
- IE下 CSS hover iframe失效
预期:某个div下存在iframe子元素,当鼠标移动到该div下,该iframe出现,移出则iframe消失,移入iframe不会引起iframe消失. 问题:在火狐下结果满足预期,在IE下,鼠标移入 ...
- python hive
sudo apt-get install sasl2-bin sudo apt-get install libsasl2-dev pip install pyhs2 pip install pyhiv ...
- maven-1-是什么
背景 1.1. 场景 假如你正在Eclipse下开发两个Java项目,姑且把它们称为A.B,其中A项目中的一些功能依赖于B项目中的某些类,那么如何维系这种依赖关系的呢? 很简单,这不就是跟我们之前写程 ...
- ASP.NET Core 入门笔记4,ASP.NET Core MVC路由入门
敲了一部分,懒得全部敲完,直接复制大佬的博客了,如有侵权,请通知我尽快删除修改 摘抄自https://www.cnblogs.com/ken-io/p/aspnet-core-tutorial-mvc ...
- Redis集群的原理和搭建(转载)
转载来源:https://www.jianshu.com/p/c869feb5581d Redis集群的原理和搭建 前言 Redis 是我们目前大规模使用的缓存中间件,由于它强大高效而又便捷的功能,得 ...