本文目录:

1. sigmoid function (logistic function)

2. 逻辑回归二分类模型

3. 神经网络做二分类问题

4. python实现神经网络做二分类问题

-----------------------------------------------------------------------------------

1. sigmoid unit 

对于一个输入样本$X(x_1,x_2, ..., x_n)$,sigmoid单元先计算$x_1,x_2, ..., x_n$的线性组合:

$z = {{\bf{w}}^T}{\bf{x}} = {w_1}{x_1} + {w_2}{x_2} + ... + {w_n}{x_n}$

然后把结果$z$输入到sigmoid函数:

$\sigma (z) = \frac{1}{{1 + {e^{ - z}}}}$

sigmoid函数图像:

sigmoid函数有个很有用的特征,就是它的导数很容易用它的输出表示,即

$\frac{{\partial \sigma (z)}}{{\partial z}} = \frac{{{e^{ - z}}}}{{{{(1 + {e^{ - z}})}^2}}} = \frac{1}{{1 + {e^{ - z}}}} \cdot \frac{{{e^{ - z}}}}{{1 + {e^{ - z}}}} = \frac{1}{{1 + {e^{ - z}}}} \cdot (1 - \frac{1}{{1 + {e^{ - z}}}}) = \sigma (z)(1 - \sigma (z))\begin{array}{*{20}{c}}
{} & {} & {} & {(1)} \\
\end{array}$

2. 逻辑回归二分类模型

把sigmoid函数应用到二分类中,当$\sigma(z)>=0.5$,输出标签$y=1$;当$\sigma(z)<0.5$,输出标签$y=0$。并定义如下条件概率:

$P\{ Y = 1|\bf{x}\} = p(x) = \frac{1}{{1 + {e^{ - {{\bf{w}}^T}\bf{x}}}}}$

$P\{ Y = 0|\bf{x}\} = 1 - p(\bf{x}) = \frac{{{e^{ - {{\bf{w}}^T}\bf{x}}}}}{{1 + {e^{ - {{\bf{w}}^T}\bf{x}}}}}$

一个事件的几率($odds$)是指该事件发生的概率和该事件不发生的概率的比值。如果事件发生的概率是$p$,那么该事件的几率是$\frac{p}{1-p}$,该事件的对数几率($log$ $odds$)或$logit$函数是$logit(p)=ln\frac{p}{1-p}$。在逻辑回归二分类模型中,事件的对数几率是

$\ln \frac{{P\{ Y = 1|\bf{x}\} }}{{P\{ Y = 0|\bf{x}\} }} = \ln \frac{{p(x)}}{{1 - p(\bf{x})}} = \ln ({e^{{{\bf{w}}^T}\bf{x}}}) = {{\bf{w}}^T}\bf{x}$

上式表明,在逻辑回归二分类模型中,输出$y=1$的对数几率是输入$\bf{x}$的线性函数。

在逻辑回归二分类模型中,对于给定的数据集$T = \{ ({{\bf{x}}_1},{y_1}),({{\bf{x}}_2},{y_2}),...,({{\bf{x}}_n},{y_n})\}$,可以应用极大似然估计法估计模型参数${{\bf{w}}^T} = ({w_1},{w_2},...,{w_n})$。

设:

$\begin{array}{l}
P\{ Y = 1|\bf{x}\} = \sigma ({{\bf{w}}^T}{\bf{x}}) \\
P\{ Y = 0|\bf{x}\} = 1 - \sigma ({{\bf{w}}^T}{\bf{x}}) \\
\end{array}$

似然函数为:

$\prod\limits_{i = 1}^n {{{[\sigma ({{\bf{w}}^T}{{\bf{x}}_i})]}^{{y_i}}}} {[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})]^{1 - {y_i}}}$

对数似然函数为:

$L({\bf{w}}) = \sum\limits_{i = 1}^n {[{y_i}\log } \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) + (1 - {y_i})\log (1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i}))]$

对$L({\bf{w}})$取极大值,

$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n {[\frac{{{y_i}}}{{\sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}} - \frac{{1 - {y_i}}}{{1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}]\frac{{\partial \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\partial ({{\bf{w}}^T}{{\bf{x}}_i})}}\frac{{\partial ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\partial {w_j}}}$

应用式(1),有

$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n {[\frac{{{y_i} - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\sigma ({{\bf{w}}^T}{{\bf{x}}_i})[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})]}}} ] \cdot \sigma ({{\bf{w}}^T}{{\bf{x}}_i})[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})] \cdot {x_{ij}}$

$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n [ {y_i} - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})] \cdot {x_{ij}}$

令$\frac{{\partial L({\bf{w}})}}{{{w_j}}}=0$即可得到参数${\bf{w}}$的估计值。

3. 神经网络做二分类问题,交叉熵损失函数

在阈值函数是sigmoid函数的神经网络中,针对二分类问题,交叉熵损失函数是比较合适的损失函数,其形式为(和上一节的对数似然函数只相差一个负号):

$C =- \frac{1}{n}\sum\limits_{i = 1}^n {[{y_i}\log } \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) + (1 - {y_i})\log (1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i}))]$

在神经网络的训练过程中,权重的迭代过程为:

$w_j^{k + 1} = w_j^k - \eta \frac{{\partial C}}{{\partial w_j^k}}$

在损失函数是交叉熵损失函数的情况下,

$\frac{{\partial C}}{{\partial w_j^k}} = \sum\limits_{i = 1}^n [ \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) - {y_i}] \cdot {x_{ij}} = ({{\bf{x}}^T}[\sigma ({{\bf{w}}^T}{\bf{x}}) - {\bf{y}}] )_j= ({{\bf{x}}^T}{\bf{e}})_j$

其中,${\bf{y}}$是由样本标签构成的列向量,等号后的两个式子的下标$j$表示向量的第$j$个分量。

4. python实现神经网络做二分类问题

神经网络结构:一个sigmoid单元

训练数据:总共500个训练样本,链接https://pan.baidu.com/s/1qWugzIzdN9qZUnEw4kWcww,提取码:ncuj

损失函数:交叉熵损失函数

代码如下:

import numpy as np
import matplotlib.pyplot as plt class Logister():
def __init__(self, path):
self.path = path def file2matrix(self, delimiter):
fp = open(self.path, 'r')
content = fp.read() # content现在是一行字符串,该字符串包含文件所有内容
fp.close()
rowlist = content.splitlines() # 按行转换为一维表
# 逐行遍历
# 结果按分隔符分割为行向量
recordlist = [list(map(float, row.split(delimiter))) for row in rowlist if row.strip()]
return np.mat(recordlist) def drawScatterbyLabel(self, dataSet):
m, n = dataSet.shape
target = np.array(dataSet[:, -1])
target = target.squeeze() # 把二维数据变为一维数据
for i in range(m):
if target[i] == 0:
plt.scatter(dataSet[i, 0], dataSet[i, 1], c='blue', marker='o')
if target[i] == 1:
plt.scatter(dataSet[i, 0], dataSet[i, 1], c='red', marker='o') def buildMat(self, dataSet):
m, n = dataSet.shape
dataMat = np.zeros((m, n))
dataMat[:, 0] = 1
dataMat[:, 1:] = dataSet[:, :-1]
return dataMat def logistic(self, wTx):
return 1.0/(1.0 + np.exp(-wTx)) def classfier(self, testData, weights):
prob = self.logistic(sum(testData*weights)) # 求取概率--判别算法
if prob > 0.5:
return 1
else:
return 0 if __name__ == '__main__':
logis = Logister('testSet.txt') print('1. 导入数据')
inputData = logis.file2matrix('\t')
target = inputData[:, -1]
m, n = inputData.shape
print('size of input data: {} * {}'.format(m, n)) print('2. 按分类绘制散点图')
logis.drawScatterbyLabel(inputData) print('3. 构建系数矩阵')
dataMat = logis.buildMat(inputData) alpha = 0.1 # learning rate
steps = 600 # total iterations
weights = np.ones((n, 1)) # initialize weights
weightlist = [] print('4. 训练模型')
for k in range(steps):
output = logis.logistic(dataMat * np.mat(weights))
errors = target - output
print('iteration: {} error_norm: {}'.format(k, np.linalg.norm(errors)))
weights = weights + alpha*dataMat.T*errors # 梯度下降
weightlist.append(weights) print('5. 画出训练过程')
X = np.linspace(-5, 15, 301)
weights = np.array(weights)
length = len(weightlist)
for idx in range(length):
if idx % 100 == 0:
weight = np.array(weightlist[idx])
Y = -(weight[0] + X * weight[1]) / weight[2]
plt.plot(X, Y)
plt.annotate('hplane:' + str(idx), xy=(X[0], Y[0]))
plt.show() print('6. 应用模型到测试数据中')
testdata = np.mat([-0.147324, 2.874846]) # 测试数据
m, n = testdata.shape
testmat = np.zeros((m, n+1))
testmat[:, 0] = 1
testmat[:, 1:] = testdata
print(logis.classfier(testmat, np.mat(weights))) # weights为前面训练得出的

训练600个iterations,每100个iterations输出一次训练结果,如下图:

【参考文献】

[1] 《机器学习》Mitshell,第四章

[2] 《机器学习算法原理与编程实践》郑捷,第五章第二节

[3] Neural Network and Deep Learning,Michael Nielsen,chapter 3

逻辑回归(Logistic Regression)二分类原理及python实现的更多相关文章

  1. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  3. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  6. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  7. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  8. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  9. [Machine Learning] 逻辑回归 (Logistic Regression) -分类问题-逻辑回归-正则化

    在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈 ...

随机推荐

  1. 关于博主skywang123456文章——二叉堆(三)之 Java的实现的质疑

    博客园博主skywang123456(以下简称s博主)是一个大牛级的人物,相信很多程序员都拜读过他的博客,我也不例外,并且受益匪浅.但是对于文章二叉堆(三)之 Java的实现我有一些疑惑,写在这里,供 ...

  2. RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案

    可用容量:(n-1)/n的总磁盘容量(n为磁盘数) 原因:RAID5把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上,其中任意N-1块 ...

  3. quartz (从原理到应用)详解篇(转)

    一.Quartz 基本介绍 1.1 Quartz 概述 1.2 Quartz特点 1.3 Quartz 集群配置 二.Quartz 原理及流程 2.1 quartz基本原理 2.2 quartz启动流 ...

  4. 斑马105SLPlus串口打印二维码

    1.根据说明书调试硬件,校准介质还有色带(很重要),我自己搞了好几天才搞明白. 2.设置好参数,比如打印介质连续.非连续,热敏还是热转质 3.打印机上电后悔自动校准,校准成功后就可以直接通过串口打印, ...

  5. 【leetcode】1288. Remove Covered Intervals

    题目如下: Given a list of intervals, remove all intervals that are covered by another interval in the li ...

  6. python mysql插入中文乱码

    # "INSERT INTO" 语句sql = "INSERT INTO sites (name, url, status, enable) VALUES (%s, %s ...

  7. 51 Nod 1449 砝码称重

    1449 砝码称重  题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 现在有好多种砝码,他们的重量是 w0,w1, ...

  8. luogu P4843 清理雪道

    嘟嘟嘟 这其实就是一个最小流的板子题.把每一条边的流量至少为1,然后建立附加源汇跑一遍最大流,连上\(t, s\),再跑一遍最大流就是答案. 刚开始我想错了:统计每一个点的出度和入度,去两者较大值\( ...

  9. nginx变量与实列

    nginx内置变量 内置变量存放在  ngx_http_core_module 模块中,变量的命名方式和apache 服务器变量是一致的.总而言之,这些变量代表着客户端请求头的内容,例如$http_u ...

  10. 内部排序总结之----插入类排序(插入和Shell)

    一.直接插入排序 直接插入排序(straight insertion sort)的做法是: 每次从无序表中取出第一个元素,把它插入到有序表的合适位置,使有序表仍然有序. 第一趟比较前两个数,然后把第二 ...