代码:
import tensorflow as tf
import numpy as np
### 定义添加神经网络层函数 START ### def add_layer(inputs,in_size,out_size,activation_function=None):
"""描述: 添加神经网络层函数.
:param inputs: 输入神经层
:param in_size: 输入神经层的神经元个数
:param out_size: 输出神经层的神经元个数
:param activation_function: 激励函数
""" # 定义一个"in_size行,out_size列"的随机矩阵变量
Weights=tf.Variable(tf.random_normal([in_size,out_size])) # 定义一个"1行,out_size列"的0值矩阵基准变量
biases=tf.Variable(tf.zeros([1,out_size])+0.1) # 定义一个矩阵乘法函数公式
Wx_plus_b = tf.matmul(inputs,Weights)+biases # 判断是否使用激励函数
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
### 定义添加神经网络层函数 END ### ### 定义变量结构 START### # 定义起始输入:在指定的-1到1的间隔内返回300个均匀间隔的1行300列的数组,再将数组转化为1列300行的矩阵
# 例如:
# x1 = np.array([1, 2, 3, 4, 5])
# # the shape of x1 is (5,)
# x1_new = x1[:, np.newaxis]
# # now, the shape of x1_new is (5, 1)
# array([[1],
# [2],
# [3],
# [4],
# [5]])
# x1_new = x1[np.newaxis,:]
# # now, the shape of x1_new is (1, 5)
# array([[1, 2, 3, 4, 5]]) x_data=np.linspace(-1,1,300)[:,np.newaxis] # 定义噪点 :使用高斯分布的概率密度函数定义一个均值为0,标准差为0.05的高斯随机数,个数为x_data的矩阵元素数
noise =np.random.normal(0,0.05,x_data.shape) # 定义起始输出:x_data的平方减去0.5,再加上噪点
y_data=np.square(x_data)-0.5+noise # 定义运行时参数变量
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1]) ### 定义神经网络结构 START### # 定义隐藏层神经网络层layer01
layer01=add_layer(xs,1,10,activation_function=tf.nn.relu)
# 定义隐藏层神经网络层layer02
layer02=add_layer(layer01,10,10,activation_function=tf.nn.sigmoid)
# 定义预测输出层 prediction
prediction =add_layer(layer02,10,1,activation_function=None)
# 计算损失
# 1.计算起始输出与预测输出的偏差的平方
loss_square=tf.square(y_data - prediction)
# 2.计算一个张量的各个维度上元素的总和.
reduce_sum_square=tf.reduce_sum(loss_square,reduction_indices=[1])
# 3.计算损失:张量的各个维度上的元素的平均值
loss=tf.reduce_mean(reduce_sum_square) #使用梯度下降算法训练所有样本
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 定义初始化变量
init=tf.initialize_all_variables()
# 创建会话
sess=tf.Session()
# 运行初始化变量指针
sess.run(init) ### 定义神经网络结构 END### ###定义变量结构 END### for i in range(2000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
输出结果:
> Executing task: python d:\Work\002_WorkSpace\VSCode\Tensorflow\cnn.py <

WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\framework
\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\ops
\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\util
\tf_should_use.py:193: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2019-06-16 18:23:25.445771: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
0.9150444
0.018474927
0.012227052
0.008430008
0.006330067
0.005174632
0.0045147026
0.004099458
0.0037936615
0.0035521714
0.0033668855
0.003235288
0.0031796119
0.003798308
0.011472862
0.011122204
0.0038715526
0.0029777498
0.00284954
0.0028072707
0.0027813027
0.0027617016
0.0027467846
0.0027342557
0.0027231644
0.0027126905
0.0027037202
0.0026956936
0.0026887206
0.0026827992
0.0026773391
0.0026706234
0.0026643125
0.0026575066
0.0026512532
0.00264405
0.0026368005
0.0026302505
0.0026243015
0.0026188325 Terminal will be reused by tasks, press any key to close it.

[Tensorflow]激励函数tf.nn.relu样例的更多相关文章

  1. tf.nn.relu

    tf.nn.relu(features, name = None) 这个函数的作用是计算激活函数 relu,即 max(features, 0).即将矩阵中每行的非最大值置0. import tens ...

  2. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  3. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  4. tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理

    Depthwise Separable Convolution 1.简介 Depthwise Separable Convolution 是谷歌公司于2017年的CVPR中在论文”Xception: ...

  5. 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/mao_xiao_feng/article/ ...

  6. 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积

    介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...

  7. tf.nn.relu 激活函数

    tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...

  8. TensorFlow学习---tf.nn.dropout防止过拟合

    一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...

  9. TensorFlow:tf.nn.max_pool实现池化操作

    tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...

随机推荐

  1. Node.js 目录操作

    1.创建目录 mkdir 代码 demo1.js var fs = require('fs'); //创建目录 fs.mkdir('e:/nodeTest/dirTest',function(err) ...

  2. django + vue3 解决跨越问题

    django跨域 解决: https://yq.aliyun.com/articles/517215 vue3 跨越(此处没必要,django处理即可): https://blog.csdn.net/ ...

  3. Git的概念和基本使用

    概念篇 1. Git简介: 鉴于有些同学可能还不知道Git是什么,我首先对Git做个简短的介绍.Git就是类似于svn的一个版本控制工具,他其实和hg更像一些,hg也是一个分布式版本控制工具,可以说g ...

  4. C++ STL介绍——简介

    目录 1.什么是STL 2.STL中六大组件 2.1 容器(Container) 2.2 迭代器(Iterator) 2.3 算法(Algorithm) 2.4 仿函数(Functor) 2.5 适配 ...

  5. osg RTT 多相机-局部放大镜

    #ifdef _WIN32 #include <Windows.h> #endif // _WIN32 #include<iostream> #include <osgV ...

  6. STL函数适配器

    一:适配器简介 C++中有三类适配器,分别是容器适配器,迭代器适配器和函数适配器,这里主要介绍函数适配器. (一)函数适配器简介 STL中已经定义了大量的函数对象,但是有时候需要对函数返回值进行进一步 ...

  7. 一种可以避免数据迁移的分库分表scale-out扩容模式

    转自: http://jm.taobao.org/ 一种可以避免数据迁移的分库分表scale-out扩容方式 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星 ...

  8. 码云clone提示“you do not have permission to pull from the repository”

    使用git进行项目下载,换了电脑,配置了账号和邮箱后,pull一个私有项目的时候,出现如下问题: 原因分析: 由于没有设置Gitee的SSH公钥.生成公钥和配置公钥的办法,可以参考Gitee帮助里面的 ...

  9. 游戏协议模拟测试工具(TcpEngine)使用简介

    功能介绍 在有的网络开发需要走二进制流协议场景,比如网络游戏开发,在开发阶段,前端和后端协商好协议后就分别开发.在开发写代码的时候,有时需要对端发送一条完整的协议过来触发一下自己的代码,进行单步调试或 ...

  10. netcore mvc菜单,角色,权限

    netcore mvc快速开发系统(菜单,角色,权限[精确到按钮])开源 AntMgr https://github.com/yuzd/AntMgr 基于netcore2.0 mvc 开发的 快速搭建 ...