Luogu5363 SDOI2019移动金币(博弈+动态规划)
容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈。阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏。
nim和不为0不好算,于是用总方案数减掉nim和为0的方案数。然后考虑dp,按位考虑,设f[i][j]为已确定奇数石子堆的第i位及以上的放法后,保证当前异或和为0,剩下j个石子时的方案数。转移套一些组合数即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000009
#define N 150100
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,fac[N],inv[N],f[20][N],ans=1;
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int F(int n,int m){return C(n+m-1,m-1);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
fac[0]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
ans=C(n,m);n-=m;
f[19][n]=1;
for (int i=18;~i;i--)
for (int j=0;j<=n;j++)
for (int k=0;j+(2*k<<i)<=n&&2*k<=(m+1>>1);k++)
f[i][j]=(f[i][j]+1ll*f[i+1][j+(2*k<<i)]*C(m+1>>1,2*k)%P)%P;
for (int i=0;i<=n;i++)
ans=(ans+P-1ll*f[0][i]*F(i,(m>>1)+1)%P)%P;
cout<<ans;
return 0;
}
Luogu5363 SDOI2019移动金币(博弈+动态规划)的更多相关文章
- 【洛谷5363】[SDOI2019] 移动金币(动态规划)
点此看题面 大致题意: 有\(n\)个格子,让你摆放\(m\)个金币.二人博弈,每次选择一个金币向左移任意格,无法移动者输.问有多少种方案使先手必胜. 阶梯\(Nim\) 阶梯\(Nim\)的基本模型 ...
- # [SDOI2019]移动金币 阶梯博弈 dp
[SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...
- Luogu P5363 [SDOI2019]移动金币
话说这题放在智推里好久了的说,再不写掉对不起自己233 首先你要知道一个叫做阶梯Nim的东西,具体的可以看这篇博客 那么我们发现这和这道题的关系就很明显了,我们把两个金币之间的距离看作阶梯Nim的每一 ...
- [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
- BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)
由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大 ...
- [SDOI2019] 移动金币
分析 阶梯NIM模型:共有m+1堆石子,石子总数不超过n-m,求必胜的,即奇数堆石子数目异或和非零的局面数.补集转化,答案C(n,m)-奇数堆石子数目异或和位0的局面数. 可以想到按位dp,设f[i, ...
- Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划
原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...
- [VIJOS2055][SDOI2019]移动金币:DP+组合数学
分析 显然可以转化为阶梯nim. 于是问题转化为了对于所有\(i \in [0,n-m]\),求长度为\(\lfloor\frac{m+1}{2}\rfloor\),和为\(i\),异或和非\(0\) ...
- [SDOI2019]移动金币(博弈论+阶梯Nim+按位DP)
首先可以把问题转化一下:m堆石子,一共石子数不超过(n-m)颗,每次可以将一堆中一些石子推向前一堆,无法操作则失败,问有多少种方法使得先手必胜? 然后这个显然是个阶梯Nim,然后有这样的结论:奇数层异 ...
随机推荐
- Mininet系列实验(六):Mininet动态改变转发规则实验
一. 实验目的 熟悉Mininet自定义拓扑脚本的编写:熟悉编写POX脚本动态改变转发规则 二.实验原理 在SDN环境中,控制器可以通过对交换机下发流表操作来控制交换机的转发行为.在本实验中,基于Mi ...
- oracle 编译无效对象
在数据库中,会存在一些无效的对象,导致这种现象的发生原因很多,其中最常见的就是数据库升级(例如修改了表的结构),迁移而引起. 编译无效对象的方式: 1 使用alter **** compile 语句进 ...
- 使用LineNumberReader逐行读取文本文件
代码(1.8的语法): import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOExcept ...
- pytorch常用normalization函数
参考:https://blog.csdn.net/liuxiao214/article/details/81037416 归一化层,目前主要有这几个方法,Batch Normalization(201 ...
- 阶段5 3.微服务项目【学成在线】_day17 用户认证 Zuul_16-网关-过虑器
4.5 过虑器 Zuul的核心就是过虑器,通过过虑器实现请求过虑,身份校验等. 4.5.1 ZuulFilter 自定义过虑器需要继承 ZuulFilter,ZuulFilter是一个抽象类,需要覆盖 ...
- spark 入门学习 核心api
spark入门教程(3)--Spark 核心API开发 原创 2016年04月13日 20:52:28 标签: spark / 分布式 / 大数据 / 教程 / 应用 4999 本教程源于2016年3 ...
- (二)Centos之在VM虚拟机中安装Centos操作系统
一.下载 阿里云镜像 https://mirrors.aliyun.com/centos/7/isos/x86_64/ 下载那个 DVD版本即可. 二.安装 在安装操作系统之前 我们来给这个“机器”搞 ...
- JEECG中修改时间相关自定义定时器
JEECG中使用,如下: @InitBinder public void initBinder(ServletRequestDataBinder binder) { binder.registerCu ...
- web前端学习路程
学习路程: 1.HTML和CSS基础 2.JavaScript语言 3.jQuery and ajax 4.综合网站实践 5.优化及调试
- galera集群启动异常问题
WSREP: failed to open gcomm backend connection: 131: invalid UUID 进入该数据库节点/var/lib/mysql/目录,将文件gvwst ...