Uplift Decision Tree With KL Divergence

Intro

Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是在电商领域,比如我们给一部分用户发了一些优惠券,那么这些行为是否将“转化”用户呢?是否会起一些积极作用呢?Uplift Model是模拟增量操作对个人行为的影响的。(经济学的人研究)

而在决策树中,我们给一部分样本treatment,而不给另一部分样本treatment,这样相当于每个样本都多了一个属性,也就是是否被给予treatment,利用这一点,我们可以计算给予treatment和未被给予treatment的样本的KL散度,然后每次节点分裂使得KL散度最大化,这样可以使得给予treatment和未被给予treatment的样本距离最远。因此,使用KL散度来做节点分裂距离的思想就是使得分裂前后子节点的平均KL散度增加,而且相对父节点最大增加。

KL-Divergence

KL散度在学习分类问题的交叉熵的时候非常常见,从概率论角度,KL散度的本质是衡量两个分布的距离,从信息论角度,他的本质是使用p分布来编码q所需要的编码长度。

KL散度的数学定义为:
\[
KL(P:Q) = \sum_i p_i log(\frac{p_i}{q_i})
\]

Uplift Decision Tree

首先定义分裂前后treatment和没给treatment的数据的KL散度:

分裂前两者的KL散度为:(其中C表示没给treatment)
\[
KL(P^T(Y):P^C(Y)) = \sum_i p^T(y_i) log\frac{p^T(y_i)}{p^C(y_i)}
\]
以A属性作为分裂属性分裂后的条件KL散度:(a代表属性取值,N代表分裂之前总样本数,N(a)是该属性取该值的样本数)
\[
KL((P^T(Y):P^C(Y))|A) = \sum_{a}\frac{N(a)}{N}D(P^T(Y|a):P^C(Y|a))
\]
则最终KL散度的增量为:
\[
KL_{gain} = KL((P^T(Y):P^C(Y))|A) - KL(P^T(Y):P^C(Y))
\]
计算每个属性分裂属性

最终求得最大的作为分裂的标准。

Example

Coding

import numpy as np
import random
class Node():
    def __init__(self):
        self.children = []
        self.value = None
        self.attr = None
        self.attr_values = []
class DecistionTree():
    def __init__(self,dataset,attrs,mode = "Entropy"):
        self.dataset = np.array(dataset)
        self.attrs = attrs
        self.root = Node()
        self.mode = mode
    def predict(self,sample,root):
        attr = root.attr # 属性名
        res = ""
        #print("****start at attribute:{}****".format(attr))
        attr_idx = self.attrs.index(attr) # 这个属性的idx
        flag = False
        if sample[0,attr_idx] in root.attr_values:
            index = root.attr_values.index(sample[0,attr_idx]) # 本节点的属性对应的第几个子节点,也就是子节点index
            value = root.children[index].value
            #print(type(value))
            if type(value) is np.str_:
                #print(value)
                res = value
            else:
                res = self.predict(sample,root.children[index])

        return res
    def create_tree(self,dataset,attrs,root):
        label = dataset[:,-1]

        if len(set(list(label))) == 1:
            return label[0]
        #if dataset.shape[1] == 2: # 全部遍历完了
        #    return label[0]
        if len(attrs) == 0:
            return label[0]
        idx = self.chooseBestFeatureToSplit(dataset) # feature idx
        myTree = []
        myTree.append(self.attrs[attrs[idx]])
        root.attr = self.attrs[attrs[idx]]
        attrs.remove(attrs[idx])

        #root.childen.append(idx)
        values = set(list(dataset[:,idx]))

        for value in values:
            sub_dataset = dataset[dataset[:,idx] == value]
            new_node = Node()
            sub_dataset = np.delete(sub_dataset,idx,axis = 1)
            sub_tree = self.create_tree(sub_dataset[:],attrs,new_node)
            #print(sub_tree,type(sub_tree))
            if type(sub_tree) is np.str_:

                new_node.value = sub_tree
            root.children.append(new_node)
            root.attr_values.append(value)

            myTree.append(sub_tree)
        return root
        #return myTree
    def train(self,attrs):
        tree = self.create_tree(self.dataset,attrs,self.root)
        #print(tree)
        #print(self.root.attr,self.root.attr_values)
        #print(['age', ['prescript', ['astigmatic', 'nolenses', ['tearRate', 'soft', 'nolenses']], 'nolenses'], 'nolenses', 'nolenses'])
    def random_chosen(self,ratio = 0.5):
        assert ratio < 1 and ratio > 0.1
        idx = np.arange(self.dataset.shape[0]) # 样本个数
        choice = random.choices(idx,k = int(len(idx) * ratio)) # 正样本idx
        converted = np.zeros(shape = (len(idx),))
        converted[choice] = 1
        self.dataset = np.insert(self.dataset,-1,converted,axis = 1)
    @staticmethod
    def KL_divergence(sub_dataset):
        dataset1 = sub_dataset[sub_dataset[:,-2] == '1.0']
        dataset2 = sub_dataset[sub_dataset[:,-2] == '0.0']
        labels = set(list(sub_dataset[:,-1]))
        num_dataset1,num_dataset2 = dataset1.shape[0],dataset2.shape[0]
        res = 0.
        for label in labels:

            p = np.mean(dataset1[:,-1] == label)
            q = np.mean(dataset2[:,-1] == label) + 1e-5
            if p >0:
                res += (p* np.log2(p/q))
        return res
    @staticmethod
    def Entropy(dataSet):
        dataSet = np.array(dataSet)
        labels = dataSet[:,-1]
        label_set = list(set(list(labels)))
        num_classes = len(label_set)
        def label_ratio(labels,label):
            return np.mean(labels == label)
        probablities = []
        for label in label_set:
            probablities.append(label_ratio(labels,label))
        res = 0
        for i in range(num_classes):
            p = probablities[i]
            res -= p * np.log2(p)
        return res
    @staticmethod
    def EntropyA(dataSet,idx):
        dataSet = np.array(dataSet)
        values = set(list(dataSet[:,idx]))
        e = 0
        for value in values:
            e = e + np.sum(dataSet[:,idx] == value)
        return e / dataSet.shape[0]
    def chooseBestFeatureToSplit(self,dataset):
        dataset = np.array(dataset)
        def splitDataSet(dataSet, axis, value):
            dataSet = np.array(dataSet)

            dataMat = dataSet[:,:-1]
            attr = dataMat[:,axis]

            retDataSet = []
            for val in value:
                retDataSet.append(dataSet[attr == val])
            return retDataSet
        max_s = -1
        max_i = 0
        if self.mode == "Entropy":
            for i in range(dataset.shape[1]-2): # 特征个数
                values = set(list(dataset[:,i]))
                datasets = splitDataSet(dataset,i,values)
                s = self.Entropy(dataset)
                for ds in datasets:
                    s = s - self.Entropy(ds)
                if s > max_s:
                    max_s = s
                    max_i = i
        elif self.mode == "C4.5":
            for i in range(dataset.shape[1]-2): # 特征个数
                values = set(list(dataset[:,i]))

                datasets = splitDataSet(dataset,i,values)

                s = self.Entropy(dataset)
                for ds in datasets:
                    s = s - ds.shape[0]/dataset.shape[0] * self.KL_divergence(ds)
                ha = self.EntropyA(dataset,i)
                s = s/ha
                if s > max_s:
                    max_s = s
                    max_i = i
        else:
            for i in range(dataset.shape[1]-2): # 特征个数
                values = set(list(dataset[:,i]))

                datasets = splitDataSet(dataset,i,values)

                s0 = self.KL_divergence(dataset)
                s1 = 0.
                for ds in datasets:
                    s1 = s1 + ds.shape[0]/dataset.shape[0] * self.KL_divergence(ds)
                if s1 - s0 > max_s:
                    max_s = s1 - s0
                    max_i = i

        return max_i
def get_dataset():
    dataSet = []
    with open("/home/xueaoru/下载/decision_tree_glass/lenses.txt","r") as f:
        for line in f:
            l = line.split()
            if len(l) == 6:
                temp = l[:4]
                temp.append(l[4] + l[5])
                dataSet.append(temp)
            else:
                dataSet.append(l)
    return dataSet
def get_random_dataset(n = 100):
    labels = [["young","pre","presbyopic"],
                ["myope","hyper"],
                ["no","yes"],
                ["reduced","normal"],
                ["nolenses","soft","hard"]
            ]
    #gts =
    dataSet = []
    for i in range(n):
        dataSet.append([random.choice(labels[i]) for i in range(5)])
    return dataSet
if __name__ == "__main__":
    #dataSet = get_random_dataset(50)
    #dataSet = np.loadtxt("/home/xueaoru/下载/dataset.txt",dtype = np.str)

    dataSet = get_dataset()
    #dataSet = np.array(dataSet)
    #print(dataSet)
    #dataSet = np.array(dataSet,dtype = np.str)
    #print(get_dataset())
    #print(dataSet.shape)
    gt_set = list(set(list(np.array(dataSet)[:,-1])))
    attrs = ['s' + str(i) for i in range(4)]
    #attrs = ['age','prescript','astigmatic','tearRate']
    ds = DecistionTree(dataSet,attrs,mode = "KL")
    ds.random_chosen()
    ds.train(list(range(len(attrs))))

    ds2 = DecistionTree(dataSet,attrs,mode = "Entropy")
    ds2.random_chosen()
    ds2.train(list(range(len(attrs))))
    ds3 = DecistionTree(dataSet,attrs,mode = "C4.5")
    ds3.random_chosen()
    ds3.train(list(range(len(attrs))))
    correct = 0
    id3_correct = 0
    c45_correct = 0
    random_correct = 0
    for i in range(len(dataSet)):
        gt = np.array(dataSet)[i,-1]
        sample = np.array(dataSet)[i,:-1]
        sample = np.reshape(sample,(1,-1))
        if gt == ds2.predict(sample,ds.root):
            id3_correct += 1
        if gt == ds3.predict(sample,ds.root):
            c45_correct += 1
        if gt == ds.predict(sample,ds.root):
            correct += 1
        r = random.choice(gt_set)
        if gt == r:
            random_correct += 1
        #print(gt,ds.predict(sample,ds.root))
    print("random_choice: {}, ID3: {} ,C4.5: {}, KL_divergence: {}".format(random_correct*1.0/len(dataSet),
                                                                            id3_correct*1.0/len(dataSet),
                                                                            c45_correct*1.0/len(dataSet),
                                                                            correct*1.0/len(dataSet)))
    #tree = createTree(dataSet,list(range(len(labels))))
    

[学习笔记] Uplift Decision Tree With KL Divergence的更多相关文章

  1. 决策树学习笔记(Decision Tree)

    什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树 ...

  2. [学习笔记]Dsu On Tree

    [dsu on tree][学习笔记] - Candy? - 博客园 题单: 也称:树上启发式合并 可以解决绝大部分不带修改的离线询问的子树查询问题 流程: 1.重链剖分找重儿子 2.sol:全局用桶 ...

  3. 【学习笔记】K-D tree 区域查询时间复杂度简易证明

    查询算法的流程 如果查询与当前结点的区域无交集,直接跳出. 如果查询将当前结点的区域包含,直接跳出并上传答案. 有交集但不包含,继续递归求解. K-D Tree 如何划分区域 可以借助下文图片理解. ...

  4. [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)

    [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...

  5. 【机器学习】决策树(Decision Tree) 学习笔记

    [机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个 ...

  6. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  7. Ext.Net学习笔记22:Ext.Net Tree 用法详解

    Ext.Net学习笔记22:Ext.Net Tree 用法详解 上面的图片是一个简单的树,使用Ext.Net来创建这样的树结构非常简单,代码如下: <ext:TreePanel runat=&q ...

  8. Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree

    将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...

  9. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

随机推荐

  1. 第二十六篇 jQuery 学习8 遍历-父亲兄弟子孙元素

    jQuery 学习8 遍历-父亲兄弟子孙元素   jQuery遍历,可以理解为“移动”,使用“移动”还获取其他的元素.   什么意思呢?老师举一个例子: 班上30位同学,我是新来负责教这个班学生的老师 ...

  2. Java高并发程序设计学习笔记(八):NIO和AIO

    转自:https://blog.csdn.net/dataiyangu/article/details/87214773 什么是NIOBuffer && ChannelBuffer举个 ...

  3. java_day07_异常

    第七章: 异常 1.异常概述 在我们日常生活中,有时会出现各种各样的异常,例如:职工小王开车去上班,在正常情况下,小王会准时到达单位.但是天有不测风云,在小王去上班时,可能会遇到一些异常情况,比如小王 ...

  4. jsp页面获取浏览器中的请求 或者 转发过来的请求值

    jsp页面中的$(param.xxx)   $(param.user)相当于<%=request.getParameter("user")%>

  5. 简单了解Linux文件目录

    /bin :获得最小的系统可操作性所需要的命令 /boot :内核和加载内核所需的文件 /dev :终端.磁盘.调制解调器等的设备项 /etc :关键的启动文件和配置文件 /home :用户的主目录 ...

  6. css改变背景透明度

    透明往往能产生不错的网页视觉效果,先奉上兼容主流浏览器的CSS透明代码:.transparent{filter:alpha(opacity=90); -moz-opacity:0.9; -khtml- ...

  7. 合并K个sorted list

    合并k个已经排好序的数列是面试中也比较容易被问到的一个算法,有很多种解决,其中第一时间比较容易想到的解法如下: 对于这三组从小到大的数列: 如此循环,最终就将三个已经排序的数列的数字按从小到大的顺序排 ...

  8. Web的了解和servlet的初次见面

    web 相信大家都不陌生,平常我们浏览网页用的都是web服务.互联网起初的web就是非常简单的页面,但是随着客户需求越来越复杂,需要的功能越来越多,我们的服务器端需要处理的请求越来越多,需要区分不同的 ...

  9. 关于GRPC的讲解

    gRPC服务发现&负载均衡 https://segmentfault.com/a/1190000008672912?utm_source=tag-newest GRPC编程指南 gRPC 介绍 ...

  10. python+Appium自动化:Appium元素检测

    appium模拟用户的真实操作,如果用户第一次进入app或许会弹出一些更新提示,或者是引导页面,但是下一次开启app时则没有引导页这些界面,这时,脚本中又肯定不考虑用两套代码来进行维护,此时如何应对这 ...