【线性代数】3-2:零空间(Nullspace)
title: 【线性代数】3-2:零空间(Nullspace)
categories:
- Mathematic
- Linear Algebra
keywords: - Nullspace
- Pivot Columns
- Free Columns
- Special Solutions
- Ux=0
- Rx=0
toc: true
date: 2017-09-19 17:40:36
Abstract: 零空间的相关知识点,使用到前面的消元过程
Keywords: Nullspace,Pivot Columns,Free Columns,Special Solutions,Ux=0,Rx=0
开篇废话
重新搭的环境发现有点问题,有些latex公式显示格式有些问题,慢慢发现慢慢改,然后找一个完备的,能完全备份网站的方法,一劳永逸的完成网站,这样就可以集中精力在写博客,理解知识上了,其实我以前总犯这种错误,把一些辅助性的东西,当做主要工作点,本末倒置,买椟还珠,这种事情还是少干,毕竟人生苦短(我用python)
Ax=0Ax=0Ax=0
之前讲Ax=bAx=bAx=b的时候提到过,正着看反着看的例子,其实这个办法是MIT18.01Caculus里面讲的一种技巧,不同的方向含义不同,今天更直接了当,把b改成o,好啦,来吧,怎么能让A的列组合出来0?不用说0肯定可以,那么只有0么?并不是。
The nullspace of A consists of all solutions to Ax=0.These vectors x are in ℜn\Re^nℜn the nullspace containing all solutions of Ax=0 is donate by N(A)N(A)N(A)
其实这个nullspace还是挺别致的,起码他包含0,而之前Ax=b就不一定包含0。所以可以看出,nullspace是个subspace,原因是如果x,y向量Nullspace里面的两个向量,那么A(x+y)=0A(x+y)=0A(x+y)=0,并且A(cx)=0A(cx)=0A(cx)=0成立,所以nullspace是个子空间 Ax=bAx=bAx=b并不一定是。
Special Solutions
本文为节选,完整内容地址https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-2转载请标明出处
【线性代数】3-2:零空间(Nullspace)的更多相关文章
- MIT线性代数:6.列向量和零空间
- CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数
CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数 线性代数回顾与参考 1 基本概念和符号 1.1 基本符号 2 矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵- ...
- 斯坦福大学CS224d基础1:线性代数回顾
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...
- MIT线性代数课程 总结与理解-第一部分
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 线性代数及其应用 (David C.Lay, Steven R.Lay 著)
第1章 线性代数中的线性方程组 (已看) 介绍性实例 经济学与工程中的线性模型 1.1 线性方程组 1.2 行化简与阶梯形矩阵 1.3 向量方程 1.4 矩阵方程Ax=b 1.5 线性方程组的解集 1 ...
- 线性代数笔记13——Ax=b的通解
关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有 ...
- 线性代数之——对角化和 A 的幂
利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1, ...
- 【线性代数】3-5:独立性,基和维度(Independence,Basis and Dimension)
title: [线性代数]3-5:独立性,基和维度(Independence,Basis and Dimension) categories: Mathematic Linear Algebra ke ...
随机推荐
- Thinkphp5+Layui上传图片
ThinkPHP是一个免费开源的,快速.简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应用开发和简化企业应用开发而诞生的.ThinkPHP从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能 ...
- dev linechart动态加载数据(像股票一样的波动)
图片地址:https://blog.csdn.net/qq_33459369/article/details/80060196:(盗图) 接下来是封装的代码 #region 动态折线图 public ...
- js将阿拉伯数字转换成汉字大写
适用场景:票据,结算凭证等.将任意数字的金额,转换成汉字大写的形式.例如:1234.50 -> 壹仟贰佰叁拾肆圆伍角.壹.贰.叁.肆 直接贴代码,如下: //阿拉伯数字转换成大写汉字 funct ...
- JS基础_全局作用域
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- javaIO——AutoCloseable 小试
前面在 IO 概述篇提到过,AutoCloseable 接口类会自动调用 close() 方法,那究竟具体怎么写呢?以及发生异常情况下或者多个资源是不是都能自动调用呢?我们来写一个简单的类测试一下就知 ...
- JS实现旋转的魔方
js <script> window.onload = function () { let cube = document.querySelector('.cube') let timer ...
- 销售订单(SO)-API-创建销售订单
创建销售订单API主要注意几点: 初始化环境变量:fnd_global.apps_initialize(); mo_global.init('ONT'); mo_global.set_policy_c ...
- WPF实战案例-在线程内同步集合数据到UI线程
有这样一个场景,在vm中,我们为了ui的体验,会异步访问后端接口,获取数据集合,如果这个集合绑定到界面,并且在线程内,怎么处理? 有人讲:this.Dispatcher.Invoke,如果在vm内呢? ...
- 【python】写csv文件时遇到的错误
1.错误 在许多文件中,写入csv文件时都加"wb",w指写入,b指二进制 如: csvwrite=csv.writer(open("output.csv",& ...
- php的小数位数最长多少位
在php中, echo 0.1234567890123456;exit; // 结果为:0.12345678901235, 整数部分为0时,最多到14位小数,如果后面还有,就自动四舍五入 echo 7 ...