hive优化,控制map、reduce数量
一、调整hive作业中的map数
1.通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);
2.举例:
a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数,即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
3.是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
4.是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时我通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
增加map数方法:
1、可以合理调整以下参数可以达到增加map数目的:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
2、重建目标表将物理分区切分成多份,如下:
create table emp002 as select * from emp distribute by rand(10);
二、调整hive作业中的reduce任务个数
1、调整reduce任务个数方法一:
设置参数:
set hive.exec.reducers.bytes.per.reducer=1000000000;
set hive.exec.reducers.max=999;
2、设置reduce任务个数方法二:
调整参数:
set mapred.reduce.tasks=10;
三、hive合并输入输出文件
如果Hive的输入文件是大量的小文件,而每个文件启动一个map的话是对yarn资源的浪费,同样的,hive输出的文件也远远小于HDFS块大小,对后续处理也是不利的。
HIVE中支持通过参数调整输入和输出的文件大小
1、合并输入文件
set mapred.max.split.size=256000000; #每个Map最大输入大小
set mapred.min.split.size.per.node=100000000; #一个节点上split的至少的大小
set mapred.min.split.size.per.rack=100000000; #一个交换机下split的至少的大小
set hive.input.format=org.apache.Hadoop.hive.ql.io.CombineHiveInputFormat; #执行Map前进行小文件合并
开启org.apache.hadoop.hive.ql.io.CombineHiveInputFormat后,一个data node节点上多个小文件会进行合并,合并文件数由mapred.max.split.size限制的大小决定,mapred.min.split.size.per.node决定了多个data node上的文件是否需要合并,mapred.min.split.size.per.rack决定了多个交换机上的文件是否需要合并。
2、合并输出文件
set hive.merge.mapfiles = true #在Map-only的任务结束时合并小文件
set hive.merge.mapredfiles = true #在Map-Reduce的任务结束时合并小文件
set hive.merge.size.per.task = 256*1000*1000 #合并文件的大小
set hive.merge.smallfiles.avgsize=16000000 #当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge。
以上参数在hive-0.13.1中默认值如下:
hive (default)> set hive.merge.mapfiles;
hive.merge.mapfiles=true
hive (default)> set hive.merge.mapredfiles;
hive.merge.mapredfiles=false
hive (default)> set hive.merge.size.per.task;
hive.merge.size.per.task=256000000
hive (default)> set hive.merge.smallfiles.avgsize;
hive.merge.smallfiles.avgsize=16000000
综上所述:一个可能的hive 作业可以设置为以下格式:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.exec.reducers.bytes.per.reducer=1000000000;
set hive.exec.reducers.max=256;
set hive.merge.mapfiles=true;
set hive.merge.mapredfiles =ture;
set hive.merge.size.per.task=256000000;
set hive.merge.smallfiles.avgsize=16000000;
select deptno,count(1) from emp group by deptno;
或者
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set mapred.reduce.tasks=10;
set hive.merge.mapfiles=true;
set hive.merge.mapredfiles =ture;
set hive.merge.size.per.task=256000000;
set hive.merge.smallfiles.avgsize=16000000;
select deptno,count(1) from emp group by deptno;
hive优化,控制map、reduce数量的更多相关文章
- 深度分析如何在Hadoop中控制Map的数量
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...
- 深度分析如何在Hadoop中控制Map的数量(摘抄)
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...
- Hive中自定义Map/Reduce示例 In Python
Hive支持自定义map与reduce script.接下来我用一个简单的wordcount例子加以说明.使用Python开发(如果使用Java开发,请看这里). 开发环境: python:2.7.5 ...
- Hive中自定义Map/Reduce示例 In Java
Hive支持自定义map与reduce script.接下来我用一个简单的wordcount例子加以说明. 如果自己使用Java开发,需要处理System.in,System,out以及key/val ...
- Hadoop MR Job 关于如何控制Map Task 数量
整理下,基本分两个方式: 一.对于大量大文件(大于block块设置的大小) 增大minSize,即增大mapred.min.split.size的值,原因:splitsize=max(minisize ...
- Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduce ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- mapreduce: 揭秘InputFormat--掌控Map Reduce任务执行的利器
随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义Inp ...
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- 【转】Hive优化总结
优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoo ...
随机推荐
- 简单的鼠标操作<一个填充格子的小游戏>
#include "graphics.h" #include "conio.h" void main(){ // 初始化界面 initgraph(, ); ; ...
- docker学习笔记(一)--介绍和基本组成
Docker基本介绍 1.什么是docker docker本身不是容器,是创建容器的工具,是应用容器引擎,将应用程序自动部署到容器的开源引擎. 2.docker的目标特点 简单轻量,快速开发,具备可移 ...
- go select 使得一个 goroutine 在多个通讯操作上等待。
select 语句使得一个 goroutine 在多个通讯操作上等待. select 会阻塞,直到条件分支中的某个可以继续执行,这时就会执行那个条件分支.当多个都准备好的时候,会随机选择一个. pac ...
- Python完成迪杰斯特拉算法并生成最短路径
def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价 print("Start Dijstra Path……") path=[ ...
- ASP.net Web API综合示例
目录 概述 功能介绍 程序结构 服务器端介绍 客户端介绍 “契约” Web API设计规则 并行写入冲突与时间戳 身份验证详解 Web API验证规则 客户端MVVM简介 Web.Config 本DE ...
- hdu 1548 简单bfs。。。
由于题目过水.. 我就在这里把bfs的模板写一些吧.. bfs的思想是利用队列的特性 对树的每一层先遍历 每一次访问时取出队首 然后排出~ #include<queue>void bfs( ...
- mvc伪静态
方法一:IIS配置伪静态 方法二:项目配置伪静态 网站配置文件Web.config <system.webServer> <handlers> <add name=&qu ...
- 关闭ShowDialog的模态窗口
[DllImport("user32.dll")] private static extern IntPtr FindWindow(string a, string b); [Dl ...
- fastjson反序列化漏洞研究(上)
前言 最近护网期间,又听说fastjson传出“0day”,但网上并没有预警,在github上fastjson库中也有人提问关于fastjson反序列化漏洞的详情.也有人说是可能出现了新的绕过方式.不 ...
- LInux设置tomcat端口为80
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" ...