转载:SVD
ComputeSVD
在分布式矩阵有CoordinateMatirx,
RowMatrix, IndexedRowMatrix三种。除了CoordinateMatrix之外,IndexedRowMatrix和RowMatrix都有computeSVD方法,并且CoordinateMatrix有toIndexedRowMatrix()方法和toRowMatrix()方法可以向IndexedRowMatrix 和RowMatrix两种矩阵类型转换。
因此主要对比 IndexedRowMatrix 和 RowMatrix 两种矩阵类型的 ComputSVD 算法进行分析
关于SVD内容请参看维基百科,和一篇很棒的博文:《机器学习中的数学》进行了解。 一 算法描述: def computeSVD
( k: Int, computeU: Boolean = false, rCond: Double = 1e-9):
IndexedRowMatrix 返回类型:
SingularValueDecomposition[IndexedRowMatrix, Matrix]
RowMatrix 返回类型:
SingularValueDecomposition[RowMatrix, Matrix] U is a RowMatrix of size m x k that satisfies U' * U = eye(k),
S is a Vector of size k, holding the singular values in descending order,
V is a Matrix of size n x k that satisfies V' * V = eye(k).
k
number of leading singular values to keep (0 < k <= n). It might return less than k if there are
numerically zero singular values or there are not enough Ritz values converged before the
maximum number of Arnoldi update iterations is reached.
computeU whether to compute U rCoud the reciprocal condition number. All singular values smaller than rCond * sigma(0) are treated as zero,
where sigma(0) is the largest singular value. return SingularValueDecomposition(U, s, V). U = null if computeU = false. 二 选择例子:
构建一个4×5的矩阵M:
- 矩阵的形式为svdM.txt :
- 1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 4 0 0 0
M矩阵的奇异值分解后奇异矩阵s应为:
4 0 0 0 0
0 3 0 0 0
0 0 √5 0 0
0 0 0 0 0
我们将通过ComputeSVD函数进行验证.
三 构造矩阵,运行算法并验证结果:
<一> 构造RowMatrix矩阵:M
scala> val M = new RowMatrix(sc.textFile("hdfs:///usr/matrix/svdM.txt").map(_.split(' '))
.map(_.map(_.toDouble)).map(_.toArray)
.map(line => Vectors.dense(line)))
M: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix
<二> 调用算法
scala> val svd = M.computeSVD(4, true)
svd: SingularValueDecomposition[RowMatrix,Matrix]
可以看到svd是一个SingularValueDecomposition类型的对像,内部包含一个RowMatrix和一个Matrix用算法,并且此处的RowMatrix就是左奇异向量U,Matrix就是右奇异向量V.
<三> 验证结果
SingularValueDecomposition类API如下:
矩阵M的左奇异向量U:
scala> scala> val U = svd.U
U: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix
scala> U.rows.foreach(println)
[0.0 ,0.0 , -0.9999999999999999 , -1.4901161193847656E-8]
[0.0 ,1.0 ,0.0 ,0.0]
[0.0 ,0.0 ,0.0 ,0.0]
[-1.0 ,0.0 ,0.0 ,0.0]
矩阵M的奇异值s:
scala> val s = svd.s
s: org.apache.spark.mllib.linalg.Vector = [4.0,3.0,2.23606797749979,1.4092648163485167E-8]
矩阵M的右奇异向量V:
scala> val V = svd.V
V: org.apache.spark.mllib.linalg.Matrix =
0.0 0.0 -0.44721359549995787 0.8944271909999159
-1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 -0.8944271909999159 -0.447213595499958
转载:SVD的更多相关文章
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(上)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- 【转载】奇异值分解(SVD)计算过程示例
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...
- 奇异值分解(SVD) --- 几何意义 (转载)
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- 数值分析之奇异值分解(SVD)篇
在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1]. --Lloyd N. ...
随机推荐
- java之mybatis之一对多关联映射
1.在一对多的关联映射中,表结构如下 2.实体类结构 User.java public class User implements Serializable{ private int id; priv ...
- web API .net - .net core 对比学习-文件目录概述
个人正在学习.net web Api的相关知识,因此用这一系列博客做一记录. 1. 首先我们分别创建 .net web api 项目和 .net core web api 项目. 2. 我们首先比较一 ...
- 1005 继续(3n+1)猜想(C#)
一.题目内容: 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对 n= ...
- Java自学-控制流程 结束外部循环
Java中结束外部循环 Java中如何结束外部for循环? 示例 1 : 结束当前循环 break; 只能结束当前循环 public class HelloWorld { public static ...
- 不安全的验证码Insecure CAPTCHA
没啥好讲的,当验证不合格时,通过burp抓包工具修改成符合要求的数据包.修改参数标志位.USER-AGENT之类的参数. 防御 加强验证,Anti-CSRF token机制防御CSRF攻击,利用PDO ...
- kali之使用sqlmap进行sql注入
sqlmap简介 sqlmap支持五种不同的注入模式: 1.基于布尔的盲注,即可以根据返回页面判断条件真假的注入. 2.基于时间的盲注,即不能根据页面返回内容判断任何信息,用条件语句查看时间延迟语句是 ...
- pandas-10 pd.pivot_table()透视表功能
pandas-10 pd.pivot_table()透视表功能 和excel一样,pandas也有一个透视表的功能,具体demo如下: import numpy as np import pandas ...
- Objective-C 知识点拾遗
-- :: UIWebView的使用总结 UIWebView全解
- day 04 作业 预科
目录 作业 1.分别列出 数字类型.字符串类型.列表.字典 的 作用.定义方式和使用方法. 数字类型 字符串类型 列表 字典 词云图 作业 1.分别列出 数字类型.字符串类型.列表.字典 的 作用.定 ...
- appium 操作界面
操作界面函数: 1.swipe():模拟滑动 2.tap():点击坐标 1.swipe()函数:用来模拟滑动操作 参数说明: 坐标就是x/y坐标 duration是滑动从起点到终点坐标所耗费的时间. ...