洛谷p2613【模板】有理数取余
\(c\)等于一个分数,求他的余数,分数是不能直接模的,除以一个数等于乘上这个数的逆元。
所以此题就是求一个逆元,费马小定理求逆元是很方便的,一个快速幂就解决了。
还要注意因为\(a,b\)的值都很大,在读入的时候需要取模
但是这样只能拿到\(90\)分,最后一个点过不了,什么原因?我们还没有判断这个\(b\)是否有逆元,判断这个数是否有逆元的方法,也不难,只需判断\(gcd(b, mod)\)是否为\(1\)即可。
话说我自己写过博客的我都忘了,做题的时候回来看的\(233\)
貌似博客里写的东西还出锅了,又被\(lfd\)一顿嘲笑。\(233\)(卑微.jpg
他讲的数论我当时确实是听得很明白啊,可是后来又忘了......
#include <cstdio>
#include <iostream>
using namespace std;
const int N = 19260817;
long long a, b, ans;
long long read() {
long long s = 0, w = 1;
char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') w = -1; ch = getchar();}
while(isdigit(ch)) s = s * 10 + ch - '0', s %= N, ch = getchar();
return s * w;
}
long long power(long long x, long long y) {
long long sum = 1;
while(y) {
if(y & 1) sum = (sum * x) % N;
x = (x * x) % N;
y >>= 1;
}
return sum;
}
long long gcd(long long x, long long y) {
return y == 0 ? x : gcd(y, x % y);
}
int main() {
a = read(), b = read();
if(gcd(b, N) != 1) printf("Angry!\n");
else cout << (a * power(b, N - 2)) % N << endl;
return 0;
}
谢谢收看,祝身体健康!
洛谷p2613【模板】有理数取余的更多相关文章
- [洛谷P2613] [模板] 有理数取余
刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260 ...
- 洛谷 P2613 【模板】有理数取余
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...
- 洛谷——P2613 【模板】有理数取余
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...
- P2613 【模板】有理数取余 (数论)
题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 题解 P2613 【【模板】有理数取余】
题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能 ...
- P2613 有理数取余
原题链接 https://www.luogu.org/problemnew/show/P2613 在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过! 进入正题: 首先看到题面:给出一个 ...
- 【洛谷2252&HDU1527】取石子游戏(博弈论)
题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- spring的一些概念及优点
Spring是一个轻量级的DI和AOP容器框架.说它轻量级有一大部分原因是相对于EJB的(虽然本人从来没有接触过EJB的应用),但重要的是Spring是非侵入式的,基于Spring开发应用一般不依赖于 ...
- 在Visual Studio 中使用 <AutoGenerateBindingRedirects> 来解决引用的程序集版本冲突问题
问题: https://stackoverflow.com/questions/42836248/using-autogeneratebindingredirects-in-visual-studio ...
- 使用 Xbox Game 录制桌面视频(录制音频)
使用 Xbox Game 录制桌面视频(附带音频) 前言:可能自己音频输出的问题,一直无法用工具录制桌面的音频,而最后发现利用 Xbox Game 录制游戏视频的功能很好地解决我们的问题. 1)打开游 ...
- 2019-11-29-WPF-禁用实时触摸
原文:2019-11-29-WPF-禁用实时触摸 title author date CreateTime categories WPF 禁用实时触摸 lindexi 2019-11-29 10:20 ...
- Out,ref,params修饰符,可选参数,命名参数
out输出,在调用函数中声明,在被调用函数中赋值: ref在调用函数中赋值,后调用: params修饰符,static double CalculateAverage(params[] values) ...
- UWP使用Microsoft.Data.Sqlite的记录
我在UWP中使用SQLite数据库时,并没有使用网上的SQLite for Universal App Platform方案,而使用了Microsoft和SQLite社区一起维护的Microsoft. ...
- Java生鲜电商平台-库存管理设计与架构
Java生鲜电商平台-库存管理设计与架构 WMS的功能: 1.业务批次管理 该功能提供完善的物料批次信息.批次管理设置.批号编码规则设置.日常业务处理.报表查询,以及库存管理等综合批次管理功能,使企业 ...
- Java常用类Date相关知识
Date:类 Date 表示特定的瞬间,精确到毫秒. 在 JDK 1.1 之前,类 Date 有两个其他的函数.它允许把日期解释为年.月.日.小时.分钟和秒值.它也允许格式化和解析日期字符串. Dat ...
- 1.说一下的 dubbo 的工作原理?注册中心挂了可以继续通信吗?说说一次 rpc 请求的流程?
作者:中华石杉 面试题 说一下的 dubbo 的工作原理?注册中心挂了可以继续通信吗?说说一次 rpc 请求的流程? 面试官心理分析 MQ.ES.Redis.Dubbo,上来先问你一些思考性的问题.原 ...
- Django 使用 mysql 数据库连接
启用 mysql 数据库连接 修改 app01 下的 __init__.py import pymysql pymysql.install_as_MySQLdb() 修改 settings.py DA ...