Kdtree原理以及 vs Octree
1. Kdtree原理
Kdtree是一种划分k维数据空间的数据结构,本质也是一颗二叉树,只不过每个节点的数据都是k维,当k=1时,就是图1所示的普通二叉树。
图1
1)Kdtree的建立
建立Kdtree实际上是一个不断划分的过程,首先选择最sparse的维度(一般通过计算数据在各个维度的方差,选择方差大的作为本次分割维度),然后找到该维度上的中间点,垂直该维度做第一次划分。此时k维超平面被一分为二,在两个子平面中再找最sparse的维度,以此类推直到最后一个点也被划分,那么就形了一个不断二分的树。
二维Kdtree的建立过程如图2所示,首先分别计算x,y方向上数据的方差,得知x方向上的方差最大,所以split域值首先x轴方向;然后根据x轴方向的值2,5,9,4,8,7排序选出中值为7,所以Node-data = (7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于split = 0(x轴)的直线x = 7,后面以此类推。
图2
三维Kdtree的建立过程:The first split (the red vertical plane) cuts the root cell (white) into two subcells, each of which is then split (by the green horizontal planes) into two subcells. Finally, those four cells are split (by the four blue vertical planes) into two subcells. Since there is no more splitting, the final eight are called leaf cells.
图3
2)Kdtree的搜索
搜索一般有:1. 搜索距离search point 一定radius范围内的所有点;2. 搜索距离search point最近的k个点。
星号表示要查询的点(2.1,3.1),通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行'回溯'操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。 此例中先从(7,2)点开始进行二叉查找,然后到达(5,4),最后到达(2,3),此时搜索路径中的节点为<(7,2),(5,4),(2,3)>,首先以(2,3)作为当前最近邻点,计算其到查询点(2.1,3.1)的距离为0.1414,然后回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点。以(2.1,3.1)为圆心,以0.1414为半径画圆,如图4所示。发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。
图4
一个复杂点了例子如查找点为(2,4.5),同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。以(2,4.5)为圆心,以3.041为半径作圆,如图5所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图6所示。至此,搜索路径回溯完,返回最近邻点(2,3),最近距离1.5。
图5
图6
2. Kdtree vs Octree
显然,对于不同点云应该采取不同的搜索策略,如果点云是疏散的,分布很广泛,且每什么规律(如lidar测得的点云或双目视觉捕捉的点云)Kdtree能更好的划分,而Octree则很难决定最小立方体应该是多少,太大则一个立方体里可能有很多点云,太小则可能立方体之间连不起来。如果点云分布非常规整,是某个特定物体的点云模型,则应该使用Octree,因为很容易求解凸包并且点与点之间相对距离无需再次比对父节点和子节点,更加明晰,典型的例子是斯坦福的兔子。
Kdtree原理以及 vs Octree的更多相关文章
- 机器学习——详解KD-Tree原理
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习的第15篇文章,之前的文章当中讲了Kmeans的相关优化,还讲了大名鼎鼎的EM算法.有些小伙伴表示喜欢看这些硬核的,于是今天上 ...
- KdTree && Octree 原理学习对比以及可视化分析--"索引树"
1. Kdtree 原理 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索): 索引结构中相似性查询有两种基 ...
- PCL(point cloud library) 学习——简介
Point Cloud Library (PCL) 是开源点云处理库, 包括 filtering, feature estimation, surface reconstruction, regist ...
- Kd-tree算法原理
参考资料: Kd Tree算法原理 Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据.在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成 ...
- Kd-Tree算法原理和开源实现代码
本文介绍一种用于高维空间中的高速近期邻和近似近期邻查找技术--Kd-Tree(Kd树). Kd-Tree,即K-dimensional tree,是一种高维索引树形数据结构,经常使用于在大规模的高维数 ...
- kdTree相关原理及c++实现
kdTree概念 kd-tree或者k维树是计算机科学中使用的一种数据结构,用来组织表示k维空间中点的集合.它是一种带有其他约束条件的二分查找树.Kd-tree对于区间和近邻搜索十分有用.一般位于三维 ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- bzoj 2648 KD-tree
稍微看了一下KD-tree的讲义,大概明白了它的原理,但是实现不出来... 所以无耻的抄了一下黄学长的... #include<iostream> #include<cstdio&g ...
- 最近邻查找算法kd-tree
http://blog.csdn.net/pipisorry/article/details/52186307 )选择特征(坐标轴)的方法 (2)以该特征的哪一个为界 (3)达到什么条件算法结束. ...
随机推荐
- Springboot2+SpringSecurity+Oauth2+Mysql数据库实现持久化客户端数据
目录 介绍 建表,初始化数据 工程配置 Authorization Server - Spring Security配置 Authorization Server - 授权服务器 Resource S ...
- 2019年12月的第一个bug
现在是2019年12月1日0点27分,我的心情依旧难以平静.这个月是2019年的最后一个月,是21世纪10年代的最后一个月,也是第一批90后30岁以前的最后一个月.就是在这个月的第一天的0点0分,我写 ...
- 【转】Redis的各项功能解决了哪些问题?
作者:Blackheart 出处:http://linianhui.cnblogs.com 先看一下Redis是一个什么东西.官方简介解释到:Redis是一个基于BSD开源的项目,是一个把结构化的数据 ...
- vue中操作localstorage
首先在子组件将localstorage方法进行封装 在父组件中对其进行引用 将输入的值存入到定义的searchHistory数组中,存储localstorage需要传两个参数,变量名为searchHi ...
- Git基础和入门
一.Git基础概念 Git功能简单概述 可以随时回滚到之前的代码版本(git reset --hard ): 协同开发时不会覆盖别人的代码(分支): 留下修改记录(git log): 发版时可以方便的 ...
- 【USACO题库】1.3.4 Prime Cryptarithm牛式
好久没有发题解了,今天发一个很久很久之前写过得题吧 题目其实莫名的难 但是理解后,原来就是一只纸老虎 题目加工中~~~~(缩短题目) 加工完成:已知数字1-9组成集合的一个子集,求满足题意乘法步骤的情 ...
- Linux操作:使用grep排除搜索的目录
使用grep时,当一个目录下有一个包含很多文件的目录,但也不想搜索它,怎么办? 使用 --exclude-dir 选项. 单个目录示例: grep -rni 'http' --exclude-dir= ...
- JVM参数最佳实践:元空间的初始大小和最大大小
本文阅读时间大约4分钟. JVM加载类的时候,需要记录类的元数据,这些数据会保存在一个单独的内存区域内,在Java 7里,这个空间被称为永久代(Permgen),在Java 8里,使用元空间(Meta ...
- MyDAL - .OpenDebug() 与 Visual Studio 输出窗口 使用
索引: 目录索引 SQL Debug 信息说明 一. 对 XConnection 对象 未开启 OpenDebug, 在 VS 状态下,将默认在 VS 窗口 打印出 参数化的 SQL 执行语句: 新 ...
- 【Java_基础】HashMap的工作原理
转载至博客:HashMap的工作原理