GCD(洛谷 2568)
题目描述
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
输入格式
一个整数N
输出格式
答案
输入输出样例
输入 #1
4
输出 #1
4
说明/提示
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
由题意得:gcd(x,y)=p(这里我们假设p为一个已知的质数),并且下面的过程都在这个条件下进行,我们不妨设x<=y<=n。
令x=a*p,y=b*p,则有gcd(a,b)=1,且1<=a,b<=n/p。同样不妨设a<=b(☚什么情况下会等于后面有讲到)。
那么满足gcd(x,y)=p的数对(x,y)个数其实就是满足gcd(a,b)=1的数对个数(a,b)。(下面用num(x,y)来表示满足gcd(x,y)=p的数对(x,y)个数,num(a,b)同理)
对于b来说,b的取值范围是1~n/p,而a的取值可以是φ(b)中的任意一个,所以num(x,y)=num(a,b)=∑φ(b)(b∈[1,n/p]),简单来说,就是1~n/p中所有数的欧拉函数值的和
好,代码已经成功一大半了,但是现在我们并没有p的准确值,p可能是1~n中的任意一个质数。所以我们可以在预处理中先把1~n中的质数(p1、p2……)全部找出来,最后一一枚举这些质数,每枚举一个p,就处理 当gcd(x,y)等于此时的p 的时候的num(x,y),加到最后输出的结果ans中
代码实现:首先,我们用线性筛法求出1~n中每个数的欧拉函数值,用一个数组sum(注意要开long long)来存欧拉函数值的前缀和,方便后面查找值。
其实可以这样理解,sum[i]存的就是1~i中所有数的欧拉函数值的和,也就是上面讲到的num(x,y)
那么最后枚举1~n中的质数,每一次循环都得到了一个n/p值,即b的上界,那么此时的sum[n/p]*2-1就是满足gcd(x,y)=p的(x,y)的对数。
解释一下:由样例可得,(2,4)和(4,2)是不同的两种答案,所以x,y可以交换位置得到一个新的答案,所以sum[n/p]要*2,;但是当a=b=1,即x=y=p时,只有一种答案,所以sum[n/p]*2需要再-1,将重复的删去。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
ll sum[N],vis[N],p[N],phi[N];
int main()
{
scanf("%d",&n);
memset(vis,,sizeof(vis));
vis[]=vis[]=false;
phi[]=;
for(int i=;i<=n;i++)
{
if(vis[i])p[++p[]]=i,phi[i]=i-;//记得找出质数
for(int j=;j<=p[]&&p[j]*i<=n;j++)
{
vis[p[j]*i]=false;
if(i%p[j])phi[i*p[j]]=phi[p[j]]*phi[i];
else
{
phi[i*p[j]]=p[j]*phi[i];
break;
}
}//线性筛法
}
for(int i=;i<=n;i++)sum[i]=sum[i-]+phi[i];//前缀和
ll ans=;
for(int i=;i<=p[]&&p[i]<=n;i++)//枚举1~n中的所有质数
ans+=(sum[n/p[i]]<<)-;//sum[n/p]*2-1
printf("%lld",ans);
return ;
}
写这篇题解的时候思维比较混乱,我都不知道该如何组织语言了,花了超长时间的!希望能让你理解吧OvO
如果可以的话,给个“推荐”资瓷一下吧(*^▽^*)
//参考:zhou_yk 的博客
GCD(洛谷 2568)的更多相关文章
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)
题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...
- 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)
洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...
随机推荐
- c++中获得对象类型 typeid 与 type_info
复杂部分略去,摘录要素如下: 1.typeid是C++的关键字之一,等同于sizeof这类的操作符. 2.typeid操作符的返回结果是名为type_info的标准库类型的对象的引用(在头文件type ...
- How to get the free disk space in PostgreSQL (PostgreSQL获取磁盘空间)
Get the current free disk space in PostgreSQL PostgreSQL获取磁盘空间 from eshizhan Here has a simple way t ...
- 【JVM】jmap命令详解----查看JVM内存使用详情
linux获取java进程PID: https://www.cnblogs.com/sxdcgaq8080/p/10734752.html 如果命令使用过程中报错,可能解决你问题的方案: https: ...
- Winfrom devexpress 通用权限框架
毕业到现在也快两年了,手上的项目也有好几个,但总感觉不是狠理想,近来把手上杂七杂八的项目整理了一下,结合各个项目的优点,重新开发了一套winfrom+devexpress 通用权限(CS)框架(BS版 ...
- .net 将base64转为图片
1.base64的格式为:  2.ajax传输会把+转为空格 3.后台处理的代码: string imgPath ...
- 详解Go变量类型的内存布局
定义 每当我们编写任何程序时,我们都需要在内存中存储一些数据/信息.数据存储在特定地址的存储器中.内存地址看起来像0xAFFFF(这是内存地址的十六进制表示). 现在,要访问数据,我们需要知道存储它的 ...
- 4-rocketmq 发送时异常:system busy 和 broker busy 解决方案
原文:https://www.cnblogs.com/enenen/p/10138511.html 推荐阅读:https://juejin.im/post/5d996285f265da5bad4052 ...
- 在AWS中自定义Credential Provider实现Client连接
今天在使用AWS中,由于原来的 key和secrect是放在配置文件ini里面的.现在需要改成从DB里面获取,所以需要自定义Credential.在AWS中重写这个挺简单的. 我这里是继承原先的Cre ...
- 【知识点】SPU&SKU
SPU:标准化产品单元 SPU = Standard Product Unit (标准化产品单元),SPU是商品信息聚合的最小单位,是一组可复用.易检索的标准化信息的集合,该集合描述了一个产品的特性. ...
- QML 移动端适配一个参考思路
参考: Qt Quick 准确的移动平台屏幕适配 qt qml 高宽自动适配android设备 QML 从无到有 (移动适配) 思路:以一个平台分辨率为基准(如320*480),考虑其与其它平台的比例 ...