NVIDIA-docker Cheatsheet
TensorFlow Docker requirements
- Install Docker on your local host machine.
- For GPU support on Linux, install nvidia-docker.
Note: To run the docker
command without sudo
, create the docker
group and add your user. For details, see the post-installation steps for Linux.
Download a TensorFlow Docker image
The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:
Tag | Description |
---|---|
latest |
The latest release of TensorFlow CPU binary image. Default. |
nightly |
Nightly builds of the TensorFlow image. (unstable) |
version |
Specify the version of the TensorFlow binary image, for example: 1.14.0 |
devel |
Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code. |
Each base tag has variants that add or change functionality:
Tag Variants | Description |
---|---|
tag -gpu |
The specified tag release with GPU support. (See below) |
tag -py3 |
The specified tag release with Python 3 support. |
tag -jupyter |
The specified tag release with Jupyter (includes TensorFlow tutorial notebooks) |
You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:
docker pull tensorflow/tensorflow # latest stable release
docker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
Start a TensorFlow Docker container
To start a TensorFlow-configured container, use the following command form:
docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
For details, see the docker run reference.
Examples using CPU-only images
Let's verify the TensorFlow installation using the latest
tagged image. Docker downloads a new TensorFlow image the first time it is run:
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
Success: TensorFlow is now installed. Read the tutorials to get started.
Let's demonstrate some more TensorFlow Docker recipes. Start a bash
shell session within a TensorFlow-configured container:
docker run -it tensorflow/tensorflow bash
Within the container, you can start a python
session and import TensorFlow.
To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir
):
docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.
Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:
docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...
GPU support
Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).
Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker
is only available for Linux, see their platform support FAQ for details.
Check if a GPU is available:
lspci | grep -i nvidia
Verify your nvidia-docker
installation:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Note: nvidia-docker
v1 uses the nvidia-docker
alias, where v2 uses docker --runtime=nvidia
.
Examples using GPU-enabled images
Download and run a GPU-enabled TensorFlow image (may take a few minutes):
docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker exec
to reuse a container.
Use the latest TensorFlow GPU image to start a bash
shell session in the container:
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
NVIDIA-docker Cheatsheet的更多相关文章
- CentOS7 Nvidia Docker环境
最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- centos7 安装 NVIDIA Docker
安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)
本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- 基于Docker容器使用NVIDIA-GPU训练神经网络
一,nvidia K80驱动安装 1, 查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...
- kubectl kubernetes cheatsheet
from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...
随机推荐
- TCP 通信时序及状态变迁
TCP 通信时序及状态变迁 参考链接: https://www.cnblogs.com/boxker/p/11214886.html https://blog.csdn.net/miss_ruoche ...
- linux系统最大TCP连接数限制
2017-12-28 17:48:21 chenlin465373800 阅读数 16189 不太对 本博客为转载,原文请参见<a href="http://blog.51cto ...
- 使用Nginx对Websocket进行反向代理
一. Nginx配置示例 http { map $http_upgrade $connection_upgrade { default upgrade; '' close; } server { li ...
- oracle在windows(含客户端工具pl/sql安装)下安装
安装Oracle服务器端 系统默认创建的数据库名称为orcl,可自行修改. 全局数据库名(用来唯一标示Oracle数据库,每个数据库至少由一个Oracle系统标识符(SID)引用),orcl,后面称为 ...
- reduce方法和reduceRight方法
什么是reduce方法? 先来看一下用用法: var arr = [1, 2, 3, 4] var sum = (a, b) => a + b arr.reduce(sum, 0) 由上面代码可 ...
- sublime text3中Package Control的安装
手动安装Package Control,亲测有效成功 1.点击https://github.com/wbond/package_control去github下载Package Control安装包下载 ...
- IComparable<T>.CompareTo(T) 方法
IComparable<T>.CompareTo(T) 方法 定义 命名空间: System 程序集: System.Runtime.dll, mscorlib.dll, netstand ...
- 讲题专用——线段树——优化DP
题目链接:http://codevs.cn/problem/3342/ 题解: 最小化最大值:二分 二分最长空题段 令f[i]表示抄第i道题所花费的最小时间 状态转移方程:f[i]=min(f[j]) ...
- C程序获取命令行参数
命令行参数 命令行界面中,可执行文件可以在键入命令的同一行中获取参数用于具体的执行命令.无论是Python.Java还是C等等,这些语言都能够获取命令行参数(Command-line argument ...
- gunicorn 参数
gunicorn -w 4 -b 0.0.0.0:8080 yourpyfilename:app --log-level DEBUG --timeout 60gunicorn的命令对应参数含义如下: ...