NVIDIA-docker Cheatsheet
TensorFlow Docker requirements
- Install Docker on your local host machine.
- For GPU support on Linux, install nvidia-docker.
Note: To run the docker
command without sudo
, create the docker
group and add your user. For details, see the post-installation steps for Linux.
Download a TensorFlow Docker image
The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:
Tag | Description |
---|---|
latest |
The latest release of TensorFlow CPU binary image. Default. |
nightly |
Nightly builds of the TensorFlow image. (unstable) |
version |
Specify the version of the TensorFlow binary image, for example: 1.14.0 |
devel |
Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code. |
Each base tag has variants that add or change functionality:
Tag Variants | Description |
---|---|
tag -gpu |
The specified tag release with GPU support. (See below) |
tag -py3 |
The specified tag release with Python 3 support. |
tag -jupyter |
The specified tag release with Jupyter (includes TensorFlow tutorial notebooks) |
You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:
docker pull tensorflow/tensorflow # latest stable release
docker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
Start a TensorFlow Docker container
To start a TensorFlow-configured container, use the following command form:
docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
For details, see the docker run reference.
Examples using CPU-only images
Let's verify the TensorFlow installation using the latest
tagged image. Docker downloads a new TensorFlow image the first time it is run:
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
Success: TensorFlow is now installed. Read the tutorials to get started.
Let's demonstrate some more TensorFlow Docker recipes. Start a bash
shell session within a TensorFlow-configured container:
docker run -it tensorflow/tensorflow bash
Within the container, you can start a python
session and import TensorFlow.
To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir
):
docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.
Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:
docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...
GPU support
Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).
Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker
is only available for Linux, see their platform support FAQ for details.
Check if a GPU is available:
lspci | grep -i nvidia
Verify your nvidia-docker
installation:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Note: nvidia-docker
v1 uses the nvidia-docker
alias, where v2 uses docker --runtime=nvidia
.
Examples using GPU-enabled images
Download and run a GPU-enabled TensorFlow image (may take a few minutes):
docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker exec
to reuse a container.
Use the latest TensorFlow GPU image to start a bash
shell session in the container:
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
NVIDIA-docker Cheatsheet的更多相关文章
- CentOS7 Nvidia Docker环境
最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- centos7 安装 NVIDIA Docker
安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)
本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- 基于Docker容器使用NVIDIA-GPU训练神经网络
一,nvidia K80驱动安装 1, 查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...
- kubectl kubernetes cheatsheet
from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...
随机推荐
- 十、lambda表达式、内置函数之filter、map、reduce
lambda表达式 学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即: # 普通条件语句 == : name = 'wupeiqi' else: name = 'ale ...
- pandas 生成并排放置的条形图和箱线图
1.代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据,创建 DataFrame np.r ...
- 通过async实现协程的延迟执行及结果获取
在上一次https://www.cnblogs.com/webor2006/p/12022065.html对于协程的async和wait进行了初步的学习,其可以加速执行的性能,其实对于async它是提 ...
- mysql在windows下安装(含客户端工具)
下载 http://dev.mysql.com/downloads/ 安装 在出现选择安装类型的窗口中,有“typical(默认)”.“Complete(完全)”.“Custom(用户自定义)”三个选 ...
- Java XML文档
概念 XML(EXtensible Markup Language),可扩展标记语言.可扩展就是<>内的东西可以自己定义,可以随便写.标记语言就是加了<>符号的 .HTML是超 ...
- Anaconda3(5-1)程序编辑器 自带的spyder
1装好后自带spyder编辑器 2 打开软件 3 每次程序需要制定anaconda3中创建的虚拟环境对应 的python版本的路径 例如在我的电脑我创建了两个环境 而我的pytorch安装在pytho ...
- 创建、查看、删除计划任务at命令举例
1.三天后的下午 5 点执行 /bin/ls : at 5pm + 3 days at> /bin/ls 结束按ctrl+d 查看计划任务:at -l 之后 at -c ...
- redhat quay 安装试用
最近redhat 开源了quay 容器镜像管理平台,参考官方文档跑的时候需要订阅,各种不好使,然后就自己基于源码构建了 一个镜像(使用官方的dockerfile,构建出来的太大了1.9G 以及push ...
- django @login_required登录限制
参考文章:https://www.cnblogs.com/wodekaifalog/p/10817275.html 我们在网站开发过程中,经常会遇到这样的需求: 用户登陆系统才可以访问某些页面 如果用 ...
- 关于微信订阅号里自动回复里的a链接的问题
前阵子做了一个微信订阅号的活动,然后发现一个问题:就是回复内容里的a标签微信没有解析出来,而是这样 正常应该是这样: 具体出现这种情况的手机有: 魅族的型号是:M1 metal小米的型号是:MI 5X ...