TensorFlow Docker requirements

  1. Install Docker on your local host machine.
  2. For GPU support on Linux, install nvidia-docker.

Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.

Download a TensorFlow Docker image

The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:

Tag Description
latest The latest release of TensorFlow CPU binary image. Default.
nightly Nightly builds of the TensorFlow image. (unstable)
version Specify the version of the TensorFlow binary image, for example: 1.14.0
devel Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Each base tag has variants that add or change functionality:

Tag Variants Description
tag-gpu The specified tag release with GPU support. (See below)
tag-py3 The specified tag release with Python 3 support.
tag-jupyter The specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:

docker pull tensorflow/tensorflow                     # latest stable release
docker pull tensorflow/tensorflow:devel-gpu           # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter  # latest release w/ GPU support and Jupyter
 

Start a TensorFlow Docker container

To start a TensorFlow-configured container, use the following command form:

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
 

For details, see the docker run reference.

Examples using CPU-only images

Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:

docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

Success: TensorFlow is now installed. Read the tutorials to get started.

Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:

docker run -it tensorflow/tensorflow bash
 

Within the container, you can start a python session and import TensorFlow.

To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
 

Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.

Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
 

Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...

GPU support

Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).

Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.

Check if a GPU is available:

lspci | grep -i nvidia
 

Verify your nvidia-docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.

Examples using GPU-enabled images

Download and run a GPU-enabled TensorFlow image (may take a few minutes):

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.

Use the latest TensorFlow GPU image to start a bash shell session in the container:

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
 

NVIDIA-docker Cheatsheet的更多相关文章

  1. CentOS7 Nvidia Docker环境

    最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...

  2. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  4. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  5. centos7 安装 NVIDIA Docker

    安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...

  6. Docker Cheatsheet

    一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...

  7. docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)

    本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.

  8. Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装

    一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...

  9. 基于Docker容器使用NVIDIA-GPU训练神经网络

    一,nvidia K80驱动安装 1,  查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...

  10. kubectl kubernetes cheatsheet

    from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...

随机推荐

  1. error: Libtool library used but 'LIBTOOL' is undefined

    编译时出现: error: Libtool library used but ‘LIBTOOL’ is undefined 参考了一下: http://stackoverflow.com/questi ...

  2. Chrome调试 ---- 控制台获取元素上绑定的事件信息以及监控事件

    需求场景 在前端开发中,偶尔需要验证下某个元素上到底绑定了哪些事件,以及监控某个元素上的事件触发情况. 解决方案 普通操作 之前面对这种情况,一般采取的措施就是在各个事件里写console.info, ...

  3. 富文本编辑器 KindEditor 的基本使用 文件上传 图片上传

    富文本编辑器 KindEditor 富文本编辑器,Rich Text Editor , 简称 RTE , 它提供类似于 Microsoft Word 的编辑功能. 常用的富文本编辑器: KindEdi ...

  4. Comet OJ 夏季欢乐赛 距离产生美

    距离产生美 https://cometoj.com/contest/59/problem/B?problem_id=2680 题目描述 JWJU放暑假了,于是鸡尾酒就和女朋友璇璇一起出去玩.但是外面太 ...

  5. hdu1005-Number Sequence-(循环节)

    题意:已知f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7,给出A,B,n,求f(n) 题解:n巨大,循环肯定超时,在模7的 ...

  6. springMVC学习2

    参数绑定 默认支持的参数类型 @Override public Item queryItemById(int id) { Item item = this.itemMapper.selectByPri ...

  7. MySQL版本问题导致的SQLException

    背景 ​ 学习使用 SpringCloud 时,使用 消费者 调用 生产者 时抛出 SQLException,持久层框架为 MyBatis,数据库为最新版本的 MySQL 版本如下: Server v ...

  8. json 字符串 反序列化

    private void button17_Click(object sender, EventArgs e) { string s = "{\"returnCode\" ...

  9. 洛谷p3353在你窗外闪耀的星星题解

    题目 首先被题目甜到了 本来搜标签搜的线段树,结果发现这题目很吸引我我果断点开 觉得前缀和就能A啊 于是乎 要注意 窗户旁边是可以看到的 所以前缀和的时候是不用再-1的 //前缀和 //注意坑点 // ...

  10. 根据 oracle 标准计算超长字符串的长度

    Oracle 数据库使用 sql语句 :    select lengthb('输入字符串') from dual  ,  来计算 字符串 所占的字节长度(比如,一个汉字3个字节),但是用这个leng ...