TensorFlow Docker requirements

  1. Install Docker on your local host machine.
  2. For GPU support on Linux, install nvidia-docker.

Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.

Download a TensorFlow Docker image

The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:

Tag Description
latest The latest release of TensorFlow CPU binary image. Default.
nightly Nightly builds of the TensorFlow image. (unstable)
version Specify the version of the TensorFlow binary image, for example: 1.14.0
devel Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Each base tag has variants that add or change functionality:

Tag Variants Description
tag-gpu The specified tag release with GPU support. (See below)
tag-py3 The specified tag release with Python 3 support.
tag-jupyter The specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:

docker pull tensorflow/tensorflow                     # latest stable release
docker pull tensorflow/tensorflow:devel-gpu           # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter  # latest release w/ GPU support and Jupyter
 

Start a TensorFlow Docker container

To start a TensorFlow-configured container, use the following command form:

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
 

For details, see the docker run reference.

Examples using CPU-only images

Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:

docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

Success: TensorFlow is now installed. Read the tutorials to get started.

Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:

docker run -it tensorflow/tensorflow bash
 

Within the container, you can start a python session and import TensorFlow.

To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
 

Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.

Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
 

Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...

GPU support

Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).

Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.

Check if a GPU is available:

lspci | grep -i nvidia
 

Verify your nvidia-docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.

Examples using GPU-enabled images

Download and run a GPU-enabled TensorFlow image (may take a few minutes):

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.

Use the latest TensorFlow GPU image to start a bash shell session in the container:

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
 

NVIDIA-docker Cheatsheet的更多相关文章

  1. CentOS7 Nvidia Docker环境

    最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...

  2. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  4. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  5. centos7 安装 NVIDIA Docker

    安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...

  6. Docker Cheatsheet

    一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...

  7. docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)

    本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.

  8. Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装

    一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...

  9. 基于Docker容器使用NVIDIA-GPU训练神经网络

    一,nvidia K80驱动安装 1,  查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...

  10. kubectl kubernetes cheatsheet

    from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...

随机推荐

  1. Linux下远程连接MySQL数据库

    估计搞了一个多小时才把这个远程连接搞好.一台本地电脑,一台云服务器,都是linux系统. 步骤 在服务器端开启远程访问 首先进入mysql数据库,然后输入下面两个命令: grant all privi ...

  2. linux禁止root用户直接登录

    允许root用户登录是很不安全的,但是有时候为了测试的方便, 也可以允许root用户登录,但是这个方法最好不要对公网开放使用. 1.新建一个用户,用来登录 test@cloud:~> usera ...

  3. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  4. 201871010117-石欣钰《面向对象程序设计(java)》第二周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...

  5. wp_list_categories()函数使用方法|wordpress函数

    wp_list_categories()函数是将分类以链接的形式罗列出来,点击分类的链接,就可以访问该分类页面.我们有时候会在一些页面调用分类链接,这时这个函数就可以用上了.注意: wp_list_c ...

  6. Git 游离态的一次问题解决

    jie@mozq MINGW64 /d/0xcEdu/xcEduService01 ((20ce6a5...)) $ git branch -v * (HEAD detached at 20ce6a5 ...

  7. macOS Catalina 的zsh升级

    MacOS最近做了一个大版本升级,这次升级中对开发者有个很大的更新是,模式的shell变成了zsh,官方提供了升级配置文档:https://support.apple.com/zh-cn/HT2080 ...

  8. ubunt 文件permission denied问题的解决

    在linux系统使用过程中,升级python到3.6以后,执行pip命令,遇到permission denied问题,系统显示如下: -bash: /home/www/my_flask/venv/bi ...

  9. 第10组 Beta版本演示

    一.小组信息 组长博客链接 组名:凹秃曼 组内成员 学号 组员 031702240 童景霖(组长) 031702225 叶泽林 031702246 陈鸿立 031702201 万本琳 03170222 ...

  10. java信号量

    维基百科解释的信号量概念如下 信号量(英语:semaphore)又称为信号标,是一个同步对象,用于保持在0至指定最大值之间的一个计数值.当线程完成一次对该semaphore对象的等待(wait)时,该 ...