TensorFlow Docker requirements

  1. Install Docker on your local host machine.
  2. For GPU support on Linux, install nvidia-docker.

Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.

Download a TensorFlow Docker image

The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:

Tag Description
latest The latest release of TensorFlow CPU binary image. Default.
nightly Nightly builds of the TensorFlow image. (unstable)
version Specify the version of the TensorFlow binary image, for example: 1.14.0
devel Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Each base tag has variants that add or change functionality:

Tag Variants Description
tag-gpu The specified tag release with GPU support. (See below)
tag-py3 The specified tag release with Python 3 support.
tag-jupyter The specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:

docker pull tensorflow/tensorflow                     # latest stable release
docker pull tensorflow/tensorflow:devel-gpu           # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter  # latest release w/ GPU support and Jupyter
 

Start a TensorFlow Docker container

To start a TensorFlow-configured container, use the following command form:

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
 

For details, see the docker run reference.

Examples using CPU-only images

Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:

docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

Success: TensorFlow is now installed. Read the tutorials to get started.

Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:

docker run -it tensorflow/tensorflow bash
 

Within the container, you can start a python session and import TensorFlow.

To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
 

Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.

Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
 

Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...

GPU support

Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).

Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.

Check if a GPU is available:

lspci | grep -i nvidia
 

Verify your nvidia-docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.

Examples using GPU-enabled images

Download and run a GPU-enabled TensorFlow image (may take a few minutes):

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.

Use the latest TensorFlow GPU image to start a bash shell session in the container:

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
 

NVIDIA-docker Cheatsheet的更多相关文章

  1. CentOS7 Nvidia Docker环境

    最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...

  2. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  4. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  5. centos7 安装 NVIDIA Docker

    安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...

  6. Docker Cheatsheet

    一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...

  7. docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)

    本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.

  8. Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装

    一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...

  9. 基于Docker容器使用NVIDIA-GPU训练神经网络

    一,nvidia K80驱动安装 1,  查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...

  10. kubectl kubernetes cheatsheet

    from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...

随机推荐

  1. 查看ISTIO-CITADEL的证书信息

    进行任何一个POD,查看/etc/certs目录,即可知道证书信息. kubectl exec -it reviews-v1-fd6c96c74-wptxg -c istio-proxy bash l ...

  2. request.user怎么来的

    1.登录认证(auth认证登录后login后设置了session等信息包含用户的pk)      >>>>>               2.用户再次请求登录的时候,通过 ...

  3. 20180610模拟赛T3——书本整理

    [问题描述] 小明的书架上放了许多书,为了使书架变得整洁,小明决定整理书架,他将所有书按高度大小排列,这样排了之后虽然整齐了许多,但小明发现,书本的宽度不同,导致书架看上去还是有些凌乱.小明把这个凌乱 ...

  4. 红黑树与AVL树比较

    链接地址:https://blog.csdn.net/zhangkunrun/article/details/38336543 B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深 ...

  5. Python GIL、CPU密集型、IO密集型

    Python GIL(Global Interpreter Lock(全局解释器锁)) 1:进程里面多个线程,线程 共享A=10 2:Python解释器,A改完值之后会传回进程容器,为了防止A和B同时 ...

  6. 付哇刷脸支付系统源码V1.03完整安装包.zip

    付哇刷脸支付系统源码是什么? 1.是一款专业的刷脸+聚合支付平台源码系统: 2.支持对接自己的支付宝和微信官方服务商: 3.基于目前流行的WEB2.0的架构(php+mysql),采用自研DOXCX框 ...

  7. shell equal

    #!/bin/shzero=0 status=1 let status=0 if [[ $status -eq $zero ]];then echo "bu >= 3.6"e ...

  8. 第02组 Alpha冲刺(2/6)

    队名:無駄無駄 组长博客 作业博客 组员情况 张越洋 过去两天完成了哪些任务 任务分配.进度监督 提交记录(全组共用) 接下来的计划 沟通前后端成员,监督.提醒他们尽快完成各自的进度 还剩下哪些任务 ...

  9. [Gamma]Scrum Meeting#6

    github 本次会议项目由PM召开,时间为6月1日晚上10点30分 时长10分钟 任务表格 人员 昨日工作 下一步工作 木鬼 撰写博客,组织例会 撰写博客,组织例会 swoip 前端显示屏幕,翻译坐 ...

  10. git常用指令汇总

    命令行指令 Git 全局设置 git config --global user.name "cqu2003" git config --global user.email &quo ...