NVIDIA-docker Cheatsheet
TensorFlow Docker requirements
- Install Docker on your local host machine.
- For GPU support on Linux, install nvidia-docker.
Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.
Download a TensorFlow Docker image
The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:
| Tag | Description |
|---|---|
latest |
The latest release of TensorFlow CPU binary image. Default. |
nightly |
Nightly builds of the TensorFlow image. (unstable) |
version |
Specify the version of the TensorFlow binary image, for example: 1.14.0 |
devel |
Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code. |
Each base tag has variants that add or change functionality:
| Tag Variants | Description |
|---|---|
tag-gpu |
The specified tag release with GPU support. (See below) |
tag-py3 |
The specified tag release with Python 3 support. |
tag-jupyter |
The specified tag release with Jupyter (includes TensorFlow tutorial notebooks) |
You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:
docker pull tensorflow/tensorflow # latest stable releasedocker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU supportdocker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
Start a TensorFlow Docker container
To start a TensorFlow-configured container, use the following command form:
docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
For details, see the docker run reference.
Examples using CPU-only images
Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
Success: TensorFlow is now installed. Read the tutorials to get started.
Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:
docker run -it tensorflow/tensorflow bash
Within the container, you can start a python session and import TensorFlow.
To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):
docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.
Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:
docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...
GPU support
Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).
Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.
Check if a GPU is available:
lspci | grep -i nvidia
Verify your nvidia-docker installation:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.
Examples using GPU-enabled images
Download and run a GPU-enabled TensorFlow image (may take a few minutes):
docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.
Use the latest TensorFlow GPU image to start a bash shell session in the container:
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
NVIDIA-docker Cheatsheet的更多相关文章
- CentOS7 Nvidia Docker环境
最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- centos7 安装 NVIDIA Docker
安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)
本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- 基于Docker容器使用NVIDIA-GPU训练神经网络
一,nvidia K80驱动安装 1, 查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...
- kubectl kubernetes cheatsheet
from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...
随机推荐
- 查看ISTIO-CITADEL的证书信息
进行任何一个POD,查看/etc/certs目录,即可知道证书信息. kubectl exec -it reviews-v1-fd6c96c74-wptxg -c istio-proxy bash l ...
- request.user怎么来的
1.登录认证(auth认证登录后login后设置了session等信息包含用户的pk) >>>>> 2.用户再次请求登录的时候,通过 ...
- 20180610模拟赛T3——书本整理
[问题描述] 小明的书架上放了许多书,为了使书架变得整洁,小明决定整理书架,他将所有书按高度大小排列,这样排了之后虽然整齐了许多,但小明发现,书本的宽度不同,导致书架看上去还是有些凌乱.小明把这个凌乱 ...
- 红黑树与AVL树比较
链接地址:https://blog.csdn.net/zhangkunrun/article/details/38336543 B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深 ...
- Python GIL、CPU密集型、IO密集型
Python GIL(Global Interpreter Lock(全局解释器锁)) 1:进程里面多个线程,线程 共享A=10 2:Python解释器,A改完值之后会传回进程容器,为了防止A和B同时 ...
- 付哇刷脸支付系统源码V1.03完整安装包.zip
付哇刷脸支付系统源码是什么? 1.是一款专业的刷脸+聚合支付平台源码系统: 2.支持对接自己的支付宝和微信官方服务商: 3.基于目前流行的WEB2.0的架构(php+mysql),采用自研DOXCX框 ...
- shell equal
#!/bin/shzero=0 status=1 let status=0 if [[ $status -eq $zero ]];then echo "bu >= 3.6"e ...
- 第02组 Alpha冲刺(2/6)
队名:無駄無駄 组长博客 作业博客 组员情况 张越洋 过去两天完成了哪些任务 任务分配.进度监督 提交记录(全组共用) 接下来的计划 沟通前后端成员,监督.提醒他们尽快完成各自的进度 还剩下哪些任务 ...
- [Gamma]Scrum Meeting#6
github 本次会议项目由PM召开,时间为6月1日晚上10点30分 时长10分钟 任务表格 人员 昨日工作 下一步工作 木鬼 撰写博客,组织例会 撰写博客,组织例会 swoip 前端显示屏幕,翻译坐 ...
- git常用指令汇总
命令行指令 Git 全局设置 git config --global user.name "cqu2003" git config --global user.email &quo ...