一、节点间的内部通信机制

1、基础通信原理

(1)redis cluster节点间采取gossip协议进行通信

跟集中式不同,不是将集群元数据(节点信息,故障,等等)集中存储在某个节点上,而是互相之间不断通信,保持整个集群所有节点的数据是完整的

维护集群的元数据用得,集中式,一种叫做gossip

集中式:好处在于,元数据的更新和读取,时效性非常好,一旦元数据出现了变更,立即就更新到集中式的存储中,其他节点读取的时候立即就可以感知到;
不好在于,所有的元数据的跟新压力全部集中在一个地方,可能会导致元数据的存储有压力

gossip:好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续,打到所有节点上去更新,有一定的延时,降低了压力;
缺点,元数据更新有延时,可能导致集群的一些操作会有一些滞后

我们刚才做reshard,去做另外一个操作,会发现说,configuration error,达成一致

(2)10000端口

每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如7001,那么用于节点间通信的就是17001端口

每隔节点每隔一段时间都会往另外几个节点发送ping消息,同时其他几点接收到ping之后返回pong

(3)交换的信息

故障信息,节点的增加和移除,hash slot信息,等等

2、gossip协议

gossip协议包含多种消息,包括ping,pong,meet,fail,等等

meet: 某个节点发送meet给新加入的节点,让新节点加入集群中,然后新节点就会开始与其他节点进行通信

redis-trib.rb add-node

其实内部就是发送了一个gossip meet消息,给新加入的节点,通知那个节点去加入我们的集群

ping: 每个节点都会频繁给其他节点发送ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据

每个节点每秒都会频繁发送ping给其他的集群,ping,频繁的互相之间交换数据,互相进行元数据的更新

pong: 返回ping和meet,包含自己的状态和其他信息,也可以用于信息广播和更新

fail: 某个节点判断另一个节点fail之后,就发送fail给其他节点,通知其他节点,指定的节点宕机了

3、ping消息深入

ping很频繁,而且要携带一些元数据,所以可能会加重网络负担

每个节点每秒会执行10次ping,每次会选择5个最久没有通信的其他节点

当然如果发现某个节点通信延时达到了cluster_node_timeout / 2,那么立即发送ping,避免数据交换延时过长,落后的时间太长了

比如说,两个节点之间都10分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题

所以cluster_node_timeout可以调节,如果调节比较大,那么会降低发送的频率

每次ping,一个是带上自己节点的信息,还有就是带上1/10其他节点的信息,发送出去,进行数据交换

至少包含3个其他节点的信息,最多包含总节点-2个其他节点的信息

二、面向集群的jedis内部实现原理

开发,jedis,redis的java client客户端,redis cluster,jedis cluster api

jedis cluster api与redis cluster集群交互的一些基本原理

1、基于重定向的客户端

redis-cli -c,自动重定向

(1)请求重定向

客户端可能会挑选任意一个redis实例去发送命令,每个redis实例接收到命令,都会计算key对应的hash slot

如果在本地就在本地处理,否则返回moved给客户端,让客户端进行重定向

cluster keyslot mykey,可以查看一个key对应的hash slot是什么

用redis-cli的时候,可以加入-c参数,支持自动的请求重定向,redis-cli接收到moved之后,会自动重定向到对应的节点执行命令

(2)计算hash slot

计算hash slot的算法,就是根据key计算CRC16值,然后对16384取模,拿到对应的hash slot

用hash tag可以手动指定key对应的slot,同一个hash tag下的key,都会在一个hash slot中,比如set mykey1:{100}和set mykey2:{100}

(3)hash slot查找

节点间通过gossip协议进行数据交换,就知道每个hash slot在哪个节点上

2、smart jedis

(1)什么是smart jedis

基于重定向的客户端,很消耗网络IO,因为大部分情况下,可能都会出现一次请求重定向,才能找到正确的节点

所以大部分的客户端,比如java redis客户端,就是jedis,都是smart的

本地维护一份hashslot -> node的映射表,缓存,大部分情况下,直接走本地缓存就可以找到hashslot -> node,不需要通过节点进行moved重定向

(2)JedisCluster的工作原理

在JedisCluster初始化的时候,就会随机选择一个node,初始化hashslot -> node映射表,同时为每个节点创建一个JedisPool连接池

每次基于JedisCluster执行操作,首先JedisCluster都会在本地计算key的hashslot,然后在本地映射表找到对应的节点

如果那个node正好还是持有那个hashslot,那么就ok; 如果说进行了reshard这样的操作,可能hashslot已经不在那个node上了,就会返回moved

如果JedisCluter API发现对应的节点返回moved,那么利用该节点的元数据,更新本地的hashslot -> node映射表缓存

重复上面几个步骤,直到找到对应的节点,如果重试超过5次,那么就报错,JedisClusterMaxRedirectionException

jedis老版本,可能会出现在集群某个节点故障还没完成自动切换恢复时,频繁更新hash slot,频繁ping节点检查活跃,导致大量网络IO开销

jedis最新版本,对于这些过度的hash slot更新和ping,都进行了优化,避免了类似问题

(3)hashslot迁移和ask重定向

如果hash slot正在迁移,那么会返回ask重定向给jedis

jedis接收到ask重定向之后,会重新定位到目标节点去执行,但是因为ask发生在hash slot迁移过程中,所以JedisCluster API收到ask是不会更新hashslot本地缓存

已经可以确定说,hashslot已经迁移完了,moved是会更新本地hashslot->node映射表缓存的

三、高可用性与主备切换原理

redis cluster的高可用的原理,几乎跟哨兵是类似的

1、判断节点宕机

如果一个节点认为另外一个节点宕机,那么就是pfail,主观宕机

如果多个节点都认为另外一个节点宕机了,那么就是fail,客观宕机,跟哨兵的原理几乎一样,sdown,odown

在cluster-node-timeout内,某个节点一直没有返回pong,那么就被认为pfail

如果一个节点认为某个节点pfail了,那么会在gossip ping消息中,ping给其他节点,如果超过半数的节点都认为pfail了,那么就会变成fail

2、从节点过滤

对宕机的master node,从其所有的slave node中,选择一个切换成master node

检查每个slave node与master node断开连接的时间,如果超过了cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成master

这个也是跟哨兵是一样的,从节点超时过滤的步骤

3、从节点选举

哨兵:对所有从节点进行排序,slave priority,offset,run id

每个从节点,都根据自己对master复制数据的offset,来设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举

所有的master node开始slave选举投票,给要进行选举的slave进行投票,如果大部分master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成master

从节点执行主备切换,从节点切换为主节点

4、与哨兵比较

整个流程跟哨兵相比,非常类似,所以说,redis cluster功能强大,直接集成了replication和sentinal的功能

1、fork耗时导致高并发请求延时

RDB和AOF的时候,其实会有生成RDB快照,AOF rewrite,耗费磁盘IO的过程,主进程fork子进程

fork的时候,子进程是需要拷贝父进程的空间内存页表的,也是会耗费一定的时间的

一般来说,如果父进程内存有1个G的数据,那么fork可能会耗费在20ms左右,如果是10G~30G,那么就会耗费20 * 10,甚至20 * 30,也就是几百毫秒的时间

info stats中的latest_fork_usec,可以看到最近一次form的时长

redis单机QPS一般在几万,fork可能一下子就会拖慢几万条操作的请求时长,从几毫秒变成1秒

优化思路

fork耗时跟redis主进程的内存有关系,一般控制redis的内存在10GB以内,slave -> master,全量复制

2、AOF的阻塞问题

redis将数据写入AOF缓冲区,单独开一个现场做fsync操作,每秒一次

但是redis主线程会检查两次fsync的时间,如果距离上次fsync时间超过了2秒,那么写请求就会阻塞

everysec,最多丢失2秒的数据

一旦fsync超过2秒的延时,整个redis就被拖慢

优化思路

优化硬盘写入速度,建议采用SSD,不要用普通的机械硬盘,SSD,大幅度提升磁盘读写的速度

3、主从复制延迟问题

主从复制可能会超时严重,这个时候需要良好的监控和报警机制

在info replication中,可以看到master和slave复制的offset,做一个差值就可以看到对应的延迟量

如果延迟过多,那么就进行报警

4、主从复制风暴问题

如果一下子让多个slave从master去执行全量复制,一份大的rdb同时发送到多个slave,会导致网络带宽被严重占用

如果一个master真的要挂载多个slave,那尽量用树状结构,不要用星型结构

5、vm.overcommit_memory

0: 检查有没有足够内存,没有的话申请内存失败
1: 允许使用内存直到用完为止
2: 内存地址空间不能超过swap + 50%

如果是0的话,可能导致类似fork等操作执行失败,申请不到足够的内存空间

cat /proc/sys/vm/overcommit_memory
echo "vm.overcommit_memory=1" >> /etc/sysctl.conf
sysctl vm.overcommit_memory=1

6、swapiness

cat /proc/version,查看linux内核版本

如果linux内核版本<3.5,那么swapiness设置为0,这样系统宁愿swap也不会oom killer(杀掉进程)
如果linux内核版本>=3.5,那么swapiness设置为1,这样系统宁愿swap也不会oom killer

保证redis不会被杀掉

echo 0 > /proc/sys/vm/swappiness
echo vm.swapiness=0 >> /etc/sysctl.conf

7、最大打开文件句柄

ulimit -n 10032 10032

自己去上网搜一下,不同的操作系统,版本,设置的方式都不太一样

8、tcp backlog

cat /proc/sys/net/core/somaxconn
echo 511 > /proc/sys/net/core/somaxconn

redis:持久化、复制(主从架构)、哨兵(高可用,主备切换)、redis cluster(海量数据+横向扩容+高可用/主备切换)

持久化:高可用的一部分,在发生redis集群灾难的情况下(比如说部分master+slave全部死掉了),如何快速进行数据恢复,快速实现服务可用,才能实现整个系统的高可用

复制:主从架构,master -> slave 复制,读写分离的架构,写master,读slave,横向扩容slave支撑更高的读吞吐,读高并发,10万,20万,30万,上百万,QPS,横向扩容

哨兵:高可用,主从架构,在master故障的时候,快速将slave切换成master,实现快速的灾难恢复,实现高可用性

redis cluster:多master读写,数据分布式的存储,横向扩容,水平扩容,快速支撑高达的数据量+更高的读写QPS,自动进行master -> slave的主备切换,高可用

让底层的缓存系统,redis,实现能够任意水平扩容,支撑海量数据(1T+,几十T,10G * 600 redis = 6T),支撑很高的读写QPS(redis单机在几万QPS,10台,几十万QPS),高可用性(给我们每个redis实例都做好AOF+RDB的备份策略+容灾策略,slave -> master主备切换)

1T+海量数据、10万+读写QPS、99.99%高可用性

3、redis的第一套企业级的架构

如果你的数据量不大,单master就可以容纳,一般来说你的缓存的总量在10G以内就可以,那么建议按照以下架构去部署redis

redis持久化+备份方案+容灾方案+replication(主从+读写分离)+sentinal(哨兵集群,3个节点,高可用性)

可以支撑的数据量在10G以内,可以支撑的写QPS在几万左右,可以支撑的读QPS可以上10万以上(随你的需求,水平扩容slave节点就可以),可用性在99.99%

4、redis的第二套企业级架构

多master分布式存储数据,水平扩容

支撑更多的数据量,1T+以上没问题,只要扩容master即可

读写QPS分别都达到几十万都没问题,只要扩容master即可,redis cluster,读写分离,支持不太好,readonly才能去slave上读

支撑99.99%可用性,也没问题,slave -> master的主备切换,冗余slave去进一步提升可用性的方案(每个master挂一个slave,但是整个集群再加个3个slave冗余一下)

Redis cluster的核心原理分析的更多相关文章

  1. Redis深度历险——核心原理与应用实践

    高可用架构」的各位老铁们,你们好!你是否还记得上个月发布的文章中,有两篇深入讲解Redis的文章,分别是和,广大粉丝读者们对这两篇文章整体评价颇高.而我就是这两篇文章的原创作者「老钱」(钱文品),我是 ...

  2. Redis Cluster 分区实现原理

    Redis Cluster本身提供了自动将数据分散到Redis Cluster不同节点的能力,分区实现的关键点问题包括:如何将数据自动地打散到不同的节点,使得不同节点的存储数据相对均匀:如何保证客户端 ...

  3. Redis有序集内部实现原理分析(二)

    Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read 本篇博文紧随上篇Redis有序集内部实现原理分析,在这篇博文 ...

  4. Java Reference核心原理分析

    本文转载自Java Reference核心原理分析 导语 带着问题,看源码针对性会更强一点.印象会更深刻.并且效果也会更好.所以我先卖个关子,提两个问题(没准下次跳槽时就被问到). 我们可以用Byte ...

  5. Redis 发布/订阅机制原理分析

    Redis 通过 PUBLISH. SUBSCRIBE 和 PSUBSCRIBE 等命令实现发布和订阅功能.   这些命令被广泛用于构建即时通信应用,比如网络聊天室(chatroom)和实时广播.实时 ...

  6. Redis主从架构核心原理

    Redis-Cluster工作原理: redis集群内置了16384个哈希槽,当需要在 Redis 集群中放置一个 key-value 时,redis 先对 key 使用 crc16 算法算出一个结果 ...

  7. Spring核心原理分析之MVC九大组件(1)

    本文节选自<Spring 5核心原理> 1 什么是Spring MVC Spring MVC 是 Spring 提供的一个基于 MVC 设计模式的轻量级 Web 开发框架,本质上相当于 S ...

  8. 【Redis】跳跃表原理分析与基本代码实现(java)

    最近开始看Redis设计原理,碰到一个从未遇见的数据结构:跳跃表(skiplist).于是花时间学习了跳表的原理,并用java对其实现. 主要参考以下两本书: <Redis设计与实现>跳表 ...

  9. Redis有序集内部实现原理分析

    Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read Redis中支持的数据结构比Memcached要多的多啦,如 ...

随机推荐

  1. css选择指定元素

    .butSpan:){ margin-left: 10px; } nth-child(n+2)括号内可以是公式 可是是数字

  2. [技术博客]微信小程序开发中遇到的两个问题的解决

    IDE介绍 微信web开发者工具 前端语言 微信小程序使用的语言为wxml和wss,使用JSON以及js逻辑进行页面之间的交互.与网页的html和css略有不同,微信小程序在此基础上添加了自己的改进, ...

  3. php提示Notice: Undefined index解决方法

    php提示Notice: Undefined index问题,Undefined index:是指你的代码里存在:“变量还未定义.赋值就使用”的错误,这个不是致命错误,不会让你的php代码运行强行中止 ...

  4. Spark2.x(六十一):在Spark2.4 Structured Streaming中Dataset是如何执行加载数据源的?

    本章主要讨论,在Spark2.4 Structured Streaming读取kafka数据源时,kafka的topic数据是如何被执行的过程进行分析. 以下边例子展开分析: SparkSession ...

  5. jconsole远程连接centos7 服务器上的tomcat来查看服务器状况(无密码版)

    1.修改tomcat  catalina.sh 代码解释:-Dcom.sun.management.jmxremote.port=6969 //连接端口,自定义不要与已有的端口冲突-Dcom.sun. ...

  6. Java基础 awt Frame 点击叉后,在控制台输出提示信息并关闭程序

        JDK :OpenJDK-11      OS :CentOS 7.6.1810      IDE :Eclipse 2019‑03 typesetting :Markdown   code ...

  7. 泡泡一分钟:Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication Modules

    张宁 Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication ...

  8. Linux下 nohup后台运行springboot jar 包时,使用指定的 application.yml配置

    jar 包启动时指定配置文件 application.yml nohup java -jar -Dserver.port=8080 wx-member-card-0.0.1-SNAPSHOT.war ...

  9. SQL Server 2008 R2 安装 下载

    [参考]https://www.aiweibk.com/6697.html winrm 服务未启动,需要先配置.以管理员身份启动 cmd,执行 winrm quickconfig 命令. 微信截图_2 ...

  10. (转载)理解Spatial Transformer Networks

    理解Spatial Transformer Networks 转载于:知乎-SIGAI 书的购买链接 书的勘误,优化,源代码资源 获取全文PDF请查看:理解Spatial Transformer Ne ...