「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树
一道好题,感觉解法非常自然。
首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了。然后发现一次染色最下面的那些区间一定是一段连续的左儿子+一段连续的右儿子。
证明的话可以看官方题解,感性理解的话不难,同时,任意一段连续的左儿子+右儿子也对应一个区间。定义一个左儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的左儿子和右儿子,一个右儿子区间 \([l_i,r_i]\) 的后继是所有 \(r_i=l_i+1\) 的右儿子区间,不难发现这是一个DAG。那么这张图的一条路径就对应了原图的一个染色区间,也就是要求这个DAG的最小路径覆盖,优化建图+上下界最小流即可。
code
/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 200005, M = 200005;
int L[N], R[N], col[N], low[N], isl[N], n, NS, NT, cnt = 1;
inline void init(int u, int l, int r){
L[u] = l, R[u] = r;
if(l == r)
return (void) (read(col[u]), low[u] = col[u]);
int mid, lc, rc;
read(col[u]), read(mid);
init(lc = ++cnt, l, mid), init(rc = ++cnt, mid + 1, r);
isl[lc] = 1;
if(!col[u] && (col[lc] || col[rc])){
puts("OwO"); exit(0);
}
low[u] = col[u] && (!col[lc]) && (!col[rc]);
}
namespace flow{
queue<int> q;
int a[M], cap[M], nxt[M], head[N], cur[N], dis[N], S, T, cnt = 1;
inline void addedge(int x, int y, int z){
a[++cnt] = y, cap[cnt] = z, nxt[cnt] = head[x], head[x] = cnt;
a[++cnt] = x, cap[cnt] = 0, nxt[cnt] = head[y], head[y] = cnt;
}
inline int bfs(){
memset(dis, -1, sizeof(dis)), dis[S] = 0, q.push(S);
for(; !q.empty(); q.pop()){
int u = q.front();
for(int p = head[u]; p; p = nxt[p]){
int v = a[p];
if(~dis[v] || !cap[p]) continue;
dis[v] = dis[u] + 1, q.push(v);
}
}
return ~dis[T];
}
inline int dfs(int u, int flow){
if(u == T || !flow) return flow;
int used = 0;
for(int &p = cur[u]; p; p = nxt[p]){
int v = a[p];
if(dis[v] != dis[u] + 1 || !cap[p]) continue;
int x = dfs(v, min(flow, cap[p]));
used += x, flow -= x, cap[p] -= x, cap[p^1] += x;
if(!flow) break;
}
return used;
}
inline void setflow(int x, int y){ S = x, T = y; }
inline int getflow(){
int res = 0;
for(; bfs(); res += dfs(S, inf))
memcpy(cur, head, sizeof(cur));
return res;
}
}
inline void addedge(int x, int y, int a, int b){
flow::addedge(NS, y, a);
flow::addedge(x, NT, a);
flow::addedge(x, y, b - a);
}
int main(){
read(n);
init(1, 1, n);
int S = n * 6 + 1, T = S + 1;
NS = T + 1, NT = NS + 1;
for(int i = 1; i < (n << 1); i++) if(col[i]){
addedge(i, i + (n << 1), low[i], inf);
addedge(L[i] + (n << 2), i, 0, inf);
addedge(i + (n << 1), T, 0, inf);
addedge(S, i, 0, inf);
if(isl[i]){
if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2) + n, 0, inf);
addedge(L[i] + (n << 2) + n, i, 0, inf);
}
else if(R[i] < n)
addedge(i + (n << 1), R[i] + 1 + (n << 2), 0, inf);
}
flow::setflow(NS, NT);
flow::getflow();
flow::addedge(T, S, inf);
cout << flow::getflow() << endl;
return 0;
}
「UNR#1」奇怪的线段树的更多相关文章
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
- LOJ 2980 「THUSCH 2017」大魔法师——线段树
题目:https://loj.ac/problem/2980 线段树维护矩阵. 然后是 30 分.似乎是被卡常了?…… #include<cstdio> #include<cstri ...
- [UOJ] #217. 【UNR #1】奇怪的线段树
题解见大佬博客 我的丑陋代码: #include<cstdio> #include<cstring> #include<cstdlib> inline int re ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- 「AHOI2014/JSOI2014」奇怪的计算器
「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- [UOJ UNR#1]奇怪的线段树
来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- vue+element 获取验证码
我们在做一个项目,登录注册页面是少不了的,为了人机校验,验证码也是必须的 我的这个项目获取验证码,前端发送一个随机四位数给后端,后端返回一张图片,前端渲染就可以 template代码: <el- ...
- Vue组件间通信6种方式
摘要: 总有一款合适的通信方式. 作者:浪里行舟 Fundebug经授权转载,版权归原作者所有. 前言 组件是 vue.js 最强大的功能之一,而组件实例的作用域是相互独立的,这就意味着不同组件之间的 ...
- 查看LINUX系统的配置
# uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # hostn ...
- k8s krew 插件管理工具
参考:https://github.com/kubernetes-sigs/krew https://int32bit.me/2019/12/05/%E5%88%86%E4%BA%AB%E5%87%A ...
- python使用sched模块执行周期性任务和定时任务
执行周期性任务 sched模块是一个通用的事件调度程序,可以对任务进行延迟调度,基于此,可以用它来实现周期性任务. # coding:utf8 import time import sched # 初 ...
- django 基础1
1.web应用 本质是基于socket实现的应用程序 浏览器---------服务器 2.http协议:应用层协议 1.基于TCP协议 2.基于请求响应 3.短连接 4.无状态 请求协议 浏览器--- ...
- Hive 问题
hive 重启连接不上 异常信息: FAILED: HiveException java.lang.RuntimeException: Unable to instantiate org.apache ...
- Spring-Data-Redis 入门学习
Spring-Data-Redis 入门学习 参考文章: https://www.jianshu.com/p/4a9c2fec1079 导入 redis 相关依赖 <dependency> ...
- maven jar包冲突的发现与解决[工具篇]
本文是我的第177篇文章. 关于jar冲突排查解决的问题,相信很多小伙伴也都知道有一些,无非就是两类:命令 or 工具. 命令方式比如: mvn dependency:tree 工具方式比如: Mav ...
- 剑指offer 6:链表(从头到尾打印链表)
链表的数据结构 struct ListNode { int value; ListNode* next; }; 那么在链表的末尾添加一个节点的代码如下: void insert(ListNode** ...