题目链接

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

  1. 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
  2. 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
  3. (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
  4. (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

  1. 15
  2. 6
题意:由n个点构成的图,其中np个点为发电站最大发电量为zi,nc个点为用户最大消耗电量为zj,剩余点为中转点不产电也不消耗电,求此电网最大消耗电量?
 
思路:可将np个发电站看做源点,nc个用户点看做汇点,为了构成单源单汇点,增加一个源点0连向np个发电站,其边权为发电站的最大发电量;增加一个汇点n+1,由所有的用户连向汇点n+1,其边权为用户的最大消耗电量。此时,就变成了单纯的最大流问题。
 
注:第一次写Dinic最大流代码,简单介绍一下Dinic算法:
  EK(EdmondsKarp)最大流的思想为,每次采用bfs搜索找到一条增广路(设流量为flow),改变这条路径上的所有的边权值都减少flow,同时这条路径上的所有反向边权值增加flow,重复直至找不到增广路为止。
  Dinic算法很明显是EK的一个优化算法,其先采用 bfs 将图按深度分层,然后 dfs 找到所有的增广路并同样改变所有的边权值以及反向边的权值,很明显这样dfs贪心的找到所有的增广路并不是最优解,故循环再用bfs重新分层,dfs找增广路,直到bfs分层没有路径能走到汇点,此时即是最大流量了。
 
最大流Dinic代码如下:
  1. #include <iostream>
  2. #include <algorithm>
  3. #include <cstring>
  4. #include <cstdio>
  5. #include <cstdlib>
  6. #include <queue>
  7. using namespace std;
  8. const int N = ;
  9. const int MAXN = 1e9 + ;
  10.  
  11. struct Edge {
  12. int to;
  13. int value;
  14. int next;
  15. }e[*N*N];
  16. int head[N], cnt;
  17. int deep[N];
  18. int n, np, nc, m;
  19.  
  20. void insert(int u, int v, int value) {
  21. e[++cnt].to = v;
  22. e[cnt].value = value;
  23. e[cnt].next = head[u];
  24. head[u] = cnt;
  25. }
  26.  
  27. void init() {
  28. memset(head, -, sizeof(head));
  29. cnt = -;
  30. }
  31.  
  32. bool BFS() {
  33. memset(deep,-,sizeof(deep));
  34. queue<int> Q;
  35. deep[] = ;
  36. Q.push();
  37. while (!Q.empty()) {
  38. int u = Q.front();
  39. Q.pop();
  40. for (int edge = head[u]; edge != -; edge = e[edge].next) {
  41. int v = e[edge].to;
  42. if (deep[v] == - && e[edge].value > ) {
  43. deep[v] = deep[u] + ;
  44. Q.push(v);
  45. }
  46. }
  47. }
  48. if (deep[n + ] == -) return false;
  49. return true;
  50. }
  51.  
  52. int DFS(int u,int flow_pre) {
  53. if (u == n + ) return flow_pre;
  54. int flow = ;
  55. for (int edge = head[u]; edge != -; edge = e[edge].next) {
  56. int v = e[edge].to;
  57. if (deep[v] != deep[u]+ || e[edge].value==) continue;
  58. int _flow= DFS(v, min(flow_pre, e[edge].value));
  59. flow_pre -= _flow;
  60. flow += _flow;
  61. e[edge].value -= _flow;
  62. e[edge ^ ].value += _flow;
  63. if (flow_pre == ) break;
  64. }
  65. if (flow == ) deep[u] = -;
  66. return flow;
  67. }
  68. int GetMaxFlow() {
  69. int ans = ;
  70. while (BFS()) {
  71. ans += DFS(,MAXN);
  72. }
  73. return ans;
  74. }
  75. int main()
  76. {
  77. while (scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF) {
  78. init();
  79. int u, v, z;
  80. for (int i = ; i < m; i++) {
  81. scanf(" (%d,%d)%d", &u, &v, &z);
  82. insert(u+, v+, z);
  83. insert(v+, u+, );
  84. }
  85. for (int i = ; i < np; i++) {
  86. scanf(" (%d)%d", &u, &z);
  87. insert(, u+, z);
  88. insert(u+, , );
  89. }
  90. for (int i = ; i < nc; i++) {
  91. scanf(" (%d)%d", &u, &z);
  92. insert(u + , n + , z);
  93. insert(n + , u + , );
  94. }
  95. printf("%d\n",GetMaxFlow());
  96. }
  97. }
 

网络流之最大流Dinic --- poj 1459的更多相关文章

  1. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  2. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  3. 我爱网络流之最大流Dinic

    直接上大佬博客: Dinic算法详解及实现来自小菲进修中 Dinic算法(研究总结,网络流)来自SYCstudio 模板步骤: 第一步,先bfs把图划分成分成分层图网络 第二步,dfs多次找增广路 当 ...

  4. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

  5. [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]

    题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

随机推荐

  1. php安全字段和防止XSS跨站脚本攻击过滤函数

    function escape($string) { global $_POST; $search = array ( '/</i', '/>/i', '/\">/i', ...

  2. fiddler设置https抓包

    代理端口设置:127.0.0.1:8888 https抓包设置 模拟post请求: http://xxx.xxxx.com/portal/login.htm Cookie: xxxx account= ...

  3. Python爬虫:

    python中selenium操作下拉滚动条方法汇总   UI自动化中经常会遇到元素识别不到,找不到的问题,原因有很多,比如不在iframe里,xpath或id写错了等等:但有一种是在当前显示的页面元 ...

  4. <Math> 258 43

    258. Add Digits class Solution { public int addDigits(int num) { if(num == 0) return 0; if(num % 9 = ...

  5. MySQL实战45讲学习笔记:第四十三讲

    一.本节概述 我经常被问到这样一个问题:分区表有什么问题,为什么公司规范不让使用分区表呢?今天,我们就来聊聊分区表的使用行为,然后再一起回答这个问题. 二.分区表是什么? 为了说明分区表的组织形式,我 ...

  6. 爬虫——爬取Ajax动态加载网页

    常见的反爬机制及处理方式 1.Headers反爬虫 :Cookie.Referer.User-Agent 解决方案: 通过F12获取headers,传给requests.get()方法 2.IP限制 ...

  7. redis之GeoHash

    Redis 提供的 Geo 指令只有 6 个,它只是一个普通的 zset 结构. 增加geoadd 指令携带集合名称以及多个经纬度名称三元组,注意这里可以加入多个三元组127.0.0.1:6379&g ...

  8. Postman 调试请求Asp.Net Core3.0 WebApi几种常见的Get/Post/Put/Delete请求

    这里就直接截图了,如下(很简单的操作): 1:Get几种请求 2:Post 3:Put 4:Delete  最后,虽然简单,代码还是给放一下(这里只是抛砖引玉的作用,自己可以根据自身的业务需要来做进一 ...

  9. ASP.NET MVC IOC 之 Autofac 系列开篇

    本系列主要讲述Autofac在.NET MVC项目以及webform中的使用. autofac为IOC组件,实现控制反转,主要结合面向接口编程,完成较大程度的解耦工作. 作为初学者,将学习到的每一步, ...

  10. 今日头条3面,被泄露的Java最新面试题

    一.面试第 1 轮 1. linux 网络模型 2. b+树 3. 阻塞队列 4. redis 和 MongoDB 的区别.几个概念对比,还有底层实现. 5. 算法题: merge k sorted ...