一、格雷码

格雷码的优点主要是进位时只有一位跳变,误码率低。

1、二进制转格雷码

我们观察下表:

二进制码 格雷码
00 00
01 01
10 11
11 10

二进制码表示为B[],格雷码表示为G[],则有

G(i) = B(i),i为最高位

G(i-1) = B(i) xor B(i-1),i非最高位

用verilog可以这样写

 reg [WIDTH-:] bin;
reg [WIDTH-:] gray;
parameter WIDTH = ;
always @(posedge clk or negedge rst_n) begin
  if (!rst)
    gray <= 'b0;
  else
    gray <= bin^(bin>>);  //左移一位异或,从而最高位不变,次高与最高异或
end

2、格雷码转二进制

对照上表,一张图可以理解:

verilog代码可以这样写

reg [WIDTH-:] bin;
reg [WIDTH-:] gray;
parameter WIDTH = ;
always @(posedge clk or negedge rst_n) begin
if(!rst)
bin = 'b0;
else
bin = bin^(gray>>);
end

二、边沿检测

输入一个跳变信号,如按键输入、时钟输入,输出指示高电平、低电平或者跳变(双边沿),综合出的电路如下:

基本思想是利用同步时钟控制两个级联的D触发器,待检测信号输入到第一个D触发器的输入端,因为D触发器之间有一个时钟的时间延迟,因此取两个D触发器之间的信号(命名为dly1)和后一个D触发器的输出(命名为dly2),如果时钟是上升的,那么第一个D触发器输出(即dly1)为高电平,第二个为低电平,则(dly1)&(~dly2)为高,指示了上升沿,下降沿类似,双沿我们自然可以想到,任一个边沿信号为高,则输出指示为高,用一个异或门即可解决。实践中,两个D触发器还可能存在误触发,可以增加D触发器的个数,来降低错误。

三、门控时钟

我们知道,时序电路里总会有一个sys_clk,这个clk一般是从外部晶体振荡器引进来的,但是我们也知道世界上没有觉得理想的器件和路径,引入的时钟可能因为晶体各种噪声干扰或者突然“抽风”了一下,导致时钟抖动,这对时序电路来说是致命的。那么,怎么解决这种情况呢???

一种想法是输入时钟sys_clk的同时,给一个时钟使能信号clk_en,两者经过一个&门,这样输出可能会好点

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoAAAACwCAIAAAAQSkjwAAAXtUlEQVR4nO3dLYw66R3A8ZGohlRcV2Imt7mkCbn8myDIHUnF4co4UlPSEcU0ISlikwrUBImhQSJGIAmKVI2owJCQU2QUDiQCMXIqft0n0+Fl2VmYZ2C+H9Gku7A8e3e7353heTFCAACQOkP3AAAAyCMCDACABgQYAAANCDAAABoQYAAANCDAAABoQIABANCAAAMAoAEBBgBAAwIMAIAGBBgAAA0IMAAAGhBgAAA0IMAAAGhAgAEA0IAAAwCgAQEGAEADAgwAgAYEGAAADQgwAAAaEGAAADQgwAAAaECAAQDQgAADAKABAQYAQAMCDACABgQYAAANCDAAABoQYAAANCDAAABoQIABANCAAAMAoAEBBgBAgywGeLlcep43HA6Xy2X047PZTNeQAAC4rQwFeLvd2rZtmqZpmtV3pmlaluV53nK5NE1THum6rnqkYlmW4zgXvr7jOJZlRZ9SrVajT3EcR15Rfda27QTfiOM4x8M7ybKsMAwPh0O3242+tOu6V34Xtm1feDAAILOyEmDHcc61x3Vd1ZvoxyXJhmGYphm7Vr6g2+0ahmEYxsm4LpdL+YLD4TDZNxIdtrzQyT8LPM+TvzCiHxwOh/KUD7+jbrf7qe8aAJA1mQiwbduGYVSr1cPhcPIB0tpYgMMwlADHMnaZJPZcF+XK9SZhu/xCYRgeDofj70j9fWCa5na7PffFPc87fi4A4IHoD7C67PM878LDZrPZvQN8w/pefiFFbkFHOY5jvLvwfUVvyAO58p///Me27SAIdA8E+CrNAd5utxLR4xQdsywrVscbBvi29b3wQlHH17jyPnS1Wr1wnzwkwMixb9++GYbx3Xffjcdj3WMBvkRzgOXm84eXv8J13TsF+Ob1PfdCH5IAy91pefrJd6MJMHLrz3/+s2EYv/nNbwzDeH19nU6nukcEJKQ5wGoW1Vee/sUA36O+J18o6viPCSEBDiNTzE7+dUKAkVutVsswjF9//bXT6RQKBcMwKpXKNX/BA1mjM8C+76sJR8m+wtcDfKf6Hr9QjG3blwMcRuZRH0/IIsDILQnwZrMJw3C328n/NQyjXq+vVivdowM+QWeAVWA+VdCoLwZY6nunv53VC3W73WWE53ly4/3DAIeRSdGx75EAI7eiARbr9brRaMhPSqPRiH4KyDKdAVYzfrUEWN3gTfzq179Q9f/JS18T4DAMLcs6npBFgJFbxwEWi8WiVqvJD0u73d7tdjpGB3xCfgMsV8D3a/CFW9CHw6FarV4Z4DAM1aRo9aUIMHLrXICF53nlctkwjEKh8Pb2tt/v0x0d8Ak6A+x5nt4Ah5Fp2Ddv8OX3gB3HuT7A0QlZsiE2AUZuXQ6wmE6npVLJMIxisdjv91k0jGzK+ySs8G4Nvhzg7XZ7ctuvkwEOw3A2m6l/Vr7vE2Dk1jUBFqPR6OXlxTCMl5eXwWBw/6EBn5OJZUiGYfi+n/jpN1kHfPMGf2Ud8LlPqUGyFSVy6/oAh2EYBEG/3y8Wi4ZhlEqlyWRy59EBn6A5wCoqV547FJuxfGWAowm8sBPWbRt8ZYB9349eCl8IcGyQBBj59KkAi/1+3+v1ZNFwuVyez+d3Gx3wCfr3glZ7cVw4e0A4jpMgwLF3Wy/vBX3DBl8Z4NgenJcDHEYmZBFg5FOCAIvdbtfpdOTHp1arLRaLO4wO+AT9AY5OxTp3GlIYhq7rdrvd2Ac/DPDxe6Uf7o+hBvPF3TmuCfBwODwO8OWyqt2zCTDyKXGAxWazaTab8rPZaDTYuwMa6Q9w+H7ir0Tl5PHy3W73+B612jD55NXzdruVmMWeqA5fOtnF6CbMpmnKlONk1B8W5+6uy0hi3++HAVZfWW+AB4PBz3fwpz/96W9/+1vvDkajked5nuexLuXRfTHAYrVa1et1+QlttVrs3QEtMhHgMAx931c7TpimaVmW4zjdblfe7IwdSOD7vhxob7wzT5FPqbvWy+VSlV6eErs7fTgcoqcBqkvh4XB44dL8WOyF5Iuc3IsjGtHlcjkcDuXjslHlhReVR14/pJv78ccfW63WPUp5J+12u1ar1Wo1mY9TKBSazeZ4PKbHD+cmARae58neHYVCodPpsHcHUpaVAAvf94fDoW3bUqnjN33Vw5ZXU8/68AGHw+HcYz4b4CtF535/9kVPnpKUmlqt9tDb3wdBMJlMWq1WsVis1WqDwYBroEdxwwCL6XQqe3cUi8Ver8ffZEhNtgKMR/HoAY7yPK/T6ZRKJQ7VeQg3D7AYj8eyd4csGmbvDqSAACOJZwqwIpsJc6hOxt0pwGEYBkEwGAzU3h3j8fjmLwFEEWAk8ZQBFvP5vFwut1ot3hHMpvsFWMiiYZkr8Pr6Op1O7/RCAAFGEk8cYCE3JN/e3nQPBHH3DrDY7/edTkf27uC9CdwJAb6KZVnHM5lPiq3rfVZPH+DwfRfDer3OrJxMSSfAYrfbycsZhsF7E7g5AnwV5zN0DzYNeQiwmM/nlUplvV7rHgj+J80Ai/V63Wg01N4dTJjHrRBgJJGfAIdhuF6vuQmZHekHWMgcPclwu91misCHll/YTHC73R5vr/Sp5aAPgQAjiVwFOAzD/X4vy4V1DwTaAiw8z5NFw4VC4e3tjbcnYlzXtSxLtkJSmw5ZliVb/nW73ctVls3wo/spVatVee5yuZRdBbfbbbfbjb0taFmWbdsX9i6czWZqh4nos9RTZrPZ8df8ymaI1yDASCJvARbtdrvf7+seRd7pDbCYTqeyaLhYLPb7fRYNh2Ho+77sTmjbdux4Wdd11fZ/5wIsu/vJBoXRa1/P86JFVx8/HA5qM8TL5whELZdLtUfhybjK1zy3KfLNEWAkkc8Ah2HYaDRYl6JXFgIsRqORWjSc87sjKmwXuiVtO/kAOQWnWq2eOxNPPSD6QbVz8Kd+F6nEHn9KzgK4MIybI8BIIrcBDoKgUqkwG1aj7AQ4fJ8qL4uGS6XSZDLRPSINfN+X+n44BVU2GI59UDpqmmbsujlG7g8fP/HCVfW5MZwLsNx5vv5LfR0BRhK5DXAYhpvNplKpMAdHl0wFWMjeHbJouFwuz+dz3SNKlSTtmnS5rhsL8IenxilyEmv0I7cNcPr1DQkwkslzgMP3CbG886dFBgMsdrtdp9ORJNRqtcVioXtEaXBdV77lK4+HiR3rLofgnTxS9tjx6em3CrCW+oYEGMnkPMBhGI7H41arpXsUeZTZAIvNZtNsNtWi4ad/t0L1LMH7pnJRe+6G8LHY75xbBVhXfcM7BXixWHjIpFutmiDAYRiWy+Wn//WaQRkPsFitVvV6XfLQarUyPtrEPlvQGHX1nKx/NwmwxvqG9wjweDw28OyKxSIBnk6njUZD9yhy5yECLDzPk707CoVCp9N5vnkD3vs7uMka1u125enJNhD8YoBlIZPG+ob3CPB+v+/3+z1k0q3el+IKWHARnL4HCrCYTqeyd0exWOz1es+0d4dK4IWMeZ5n23Zsbw0prlrIm36ApcHyv1/ZseuLeA8YSRBgsVqtyuWy7lHky8MFWMj5Wsb7ouHnmMF3TYCFulaWS0/5oMYAm6Y5HA7VkHQ1mAAjCQKssDVHyh40wGEYBkEwGAzU3h3j8Vj3iL4q2rAPHyxXnNFUy/YaugIcRt6E1tVgAowkCLDCRXDKHjfAQhYNy94dr6+vD/3X23K5/EqAVUGTneJ6k0lYehtMgJGErgC7rtvtdm3bvnLRYTpeX185rzA1jx5gsd/vO52O7N3x0Gdtqa2VP9w8+TjAvu9f3+9jt1qGpLHBBBhJpB9g2WxWpm/IkSnX78B+bzLBTfco8uI5Aix2u518O4Zh1Ov1R5zQd/1V7HGAw8jbwAl+n1wZ4NlsFv1FcXIjDl0NJsBIIuUAy3LD6GJ/2Tb9w+3r0rFYLCqViu5R5MUzBVis1+tGoyEBaDQaD/etqYvgy78TTgZYle+au9Ddbje6X/SVAY595XNbUWppMAFGEikHWNYLHv/tnOzO1T28vLw83yrPbHq+AAvZ31Qa0G63H+g/p5MznI+dDHAYmYp1+Sb28T7S1wTYcZzY5pcXDmOINvjeJwELAowkUg7wyd3eMxXgdrs9Go10jyIXnjXAwvM8WTRcKBTe3t4eZdGw67qqr+cONToX4DByIzoWS8VxnOPbXSrA58otD4iN5/LWXeqvAePq3a2/ggAjCS0Bjv7MyAloyVYv3MN8Pq/X67pHkQvPHWAxnU5l0XCxWOz3+w+xaHi73VqWJW8V2batrkp933ddV/0Nfe7KstvtqjTatu267nK5lEmXJw8x9DxP3fqW2SExJ0Or1k0ZZ9Y+RQMsN8Y/nFz2FQQYSaQcYPVTIX/MZmEPuZggCAqFgu5R5EIeAixGo5FaNDwYDHQP5yrb7VbNkYxufRV7+/byc6NPHA6HsWMeDoeDczXVe8/zTj4g+nvswte59T+n/yHASCLlAHuRQ0PlZpe6VeX7/vL/pTaqmGKx+Cg3DB9afgIchmEQBP1+XxYNl0qlyWSie0S4JQKMJNJfhqRuN1Wr1ehLR+9ERW98pY99odORqwAL2btDFg2Xy+X5fK57RLgNAowk0r8CjlY29lmZaqF9SVK9Xuc3YwpyGGCx2+06nY78FNRqtVsdrAKNCDCSSDPAMjtjOByeW24oD0hnMBe0Wq0n2N03+3IbYLHZbJrNpvwgNBoNbro8NAKMJNIJsO/7MiNDbiyfO3rFNM27zlS8EvthpSPnARar1aper8uPQ6vVyvk/jcdFgJFECgGWva5i17vqIlgt0ZMVDncdyZVGo9Evv/zi3cJgMPjnP/+p5cTo7Pv+++8JsPA8T/buKBQKnU7ngfbugCDASCKFAMvSo9g2crPZTK382263EukPlzekYzwev7y81G7ht7/9rYGLMvIvPQum06ns3VEsFnu9HlPxHwgBRhL3DrBs/mycWiyv1gRXq1XLsrKzF8dgMPj73/9+ky8VBMFNrqSfktx65Qo4Zjwey94dsmj4IfbuAAFGEvcOsNqw5riv6ta0cWZbO13e3t76/b7uUTw/3gM+JwiCwWCg9u5gSmD2EWAkce8An5tvJbz3fTmMU5vH6rombjab7JOQAgJ8mSwalr07Xl9fp9Op7hHhLAKMJO4dYHVSt3G00/rhcJAtZ9UDoiuAPc+75lyze0h/c5J8IsDX2O/3nU5H9u749u3bv/71L31vGuTRlf+aCDCSSG0Slkqs53nL5VKW/Epx1dlhRmQ3diPRyd43USqVqEIKCPD15vP51+a6IaEr9+QhwEginas927ajV7rG0Wkqs9lMHWRmGIbeBcGFQoGZLykgwNfwPK/RaMjPxQ8//PCXv/xF8+qxPLl+EhwBRhKp3W7dbrdyELfruudWniyXS3lACuM5Z7fbvby8aBxAfhDgy6bTaaVSkfTWajW2R80yAowkeL8zZjwet1ot3aPIBQJ8jlqJZBhGs9lkl8rsI8BIggDHcBJDaghwzH6/V6uPCoUCO1M+EAKMJAhwVBAExWKRN4DTQYCV3W7Xe19xVCwW397e2I3ysRBgJEGAo6bTaaPR0D2KvCDAYRhuNpt2uy2rjGTrK3agfEQEGEkQ4CgOIkxTzgO8Wq3UcYSlUmk8HnPr5XERYCRBgKOKxSLXH6nJbYC9932wDcOoVCpscfUECDCSIMAK959TlsMATyYTOe/IMIx6vc6P3tMgwEiCAIsgCMrl8nq91j2QHMlPgIMgiK4sarVarCx6MgQYSRBgMRgMOp2O7lHkSx4CvN/v+/2+WlnUbref+/vNrdsHeL1e3+RMctxcpVL55ZdfbrLX2uvrKwEOgqBUKrHwI2XPHeDdbtfpdNTKol6vx39gT+z2AV4sFrpDg9O+ffv2xz/+kQDfivyj0D2K3HnWAG82m1arFV1ZxPTmp8ctaCRRy/0t6N1uVyqV+BWZvucL8GKxUAcnvL6+sqQtPwgwkiDAjUaDdSBaPFOA5/N5rVZTByfwX1TeEGAkkfMAv7299ft93aPIqecI8Hg8ViuLGo1Gnn+a8owAI4k8B5iFv3o9dICDIBiNRtGVRaxhyzMCjCRyG+DValWpVHjrV6MHDfB+v+/1emplUafTYXozCDCSyGeAd7tdpVJ5uF/9T+bhAiwri9T05l6vx8alEAQYSeQwwJvNplarsRWRdg8U4PV6LaOVgxNGoxH3ThBFgJFE3gLseV65XKa+WfAQAfY8T60sKpfLrCzCSQQYSeQqwKPRqF6vc9swIzIe4Ol0Gl1ZNJ/PdY8I2UWAkUR+Atxut9vtNncOsyOzAR6Px6+vr2pl0WKx0D0iZB0BRhJ5CLDneZVKZTQa6R4I/k/WAhwEwWAwUNObW61WdsaGjCPASOK5A7xarRqNRq1W4yImg7IT4N1u1+v11MEJrCzCZxFgJPGsAZYN8cvlMpsCZlYWArzZbNrttlpZ1O/3mSKABAgwkni+AHue12632Qo/+/QGeLVaRVcWjcdj5gcgMQKMJJ4jwEEQTCaTVqtVLBZrtRrLNB+CrgB7nlev19XKoslkkvIA8HweI8DL5dLzvOFwuFwuox+fzWa6hpRzP/300yMGeLVaeZ43mUx6vV6j0SgWi81mczwec//wgaQf4Ol0WqlUJL31ev0R/8tHNmU6wNvt1rZt0zRN06y+M03TsizP85bLpWma8kjXddUjFcuyHMc598UPh4PjOPIFo09xXVc9oNvtRj9brVaHw2Ea33nm/f73vzdN89utlcvlH3/88Q9/+EOlUqlWq7UbUb89y+VyrVZrNpu9Xm86nXK9+4hSC3AQBOPxWB2c0Gw22YkFt5XdADuOI9lTRVRc11VRjH5ckmwYhmmasWvlC6rVqvyAHb9QGIbdble+IH/2Rv3666+DO/j3v//t3QGTmZ9JCgHe7/fRlUXtdjsLk67xfDIaYNu2DcOoVquHw+HkA6S1sQCHYSgBrlar17+W4zgS4JPNlsvuc8MAkLK7Bni32729vamVRW9vb6wswv1kMcDD4VCKePmiczab3TvAUt/rvxSAe7tTgGUFmlpZNBgMmBmAe8tcgLfbrUTUsqwPH2xZVqyaNwww9QUy6OYBXq1WzWYzurLoVl8ZuCxzAZabzx9e/grXde8UYOoLZNMNAzyfz9XBCZVKhd1XkLLMBVjNovrK078YYOoLZNZNAjyZTMrlsjo4gSmW0CJbAfZ9X34kNAaY+gJZ9pUAB0EwGo3UyqJWq8XKImiUrQC7ris/GIkT+JUAe54ny4KTvTSAFCQL8H6/7/V6amVRp9NhZRG0y1aAVQu1BFieaxiGbdvJXh3AvX02wLvdrtPpqJVFvV6P6c3ICAIcvwKmwUCWXR9gWVmkpjcPBgP2PkOmZCvAnudpDLB6D5gGA5l1TYAXi0Wj0ZAf5HK5zMoiZFO2ApyFSVghDQYy7HKAp9OpWllUq9VYWYQsy1aAw/eCGobh+37ip99kHTANBjLoXIDH43F0ZREbgCP7MhdglcMryxdbwHdlgKOnJF3YCYsGA1kTC3AQBIPBILqyaL1eax0gcK3MBTiM7MWx3W4vP9JxnAQBdhwn2trLe0HTYCBTVIBlZZGa3tzpdDg4AY8liwGOTsW6cAyR67rdbjf2wQ8DHD1FWHx4GpJ89pq9qQHcmwT4r3/9qzo4gZVFeFBZDHD4fuKvXAefO6b3+Kr0cDhcuHrebrdyxnDsiZZlXQjwbDYz3lWr1WTvTAO4lZ9//lmtLBqNRqwswuPKaIDDMPR9X6XRNE3LshzH6Xa7slnVcDiMPTi6ileeckw+pe5aL5dLdfkrfXVdN5pY3/fV4RDRkZz8mwBACv7xj3/87ne/m0wmugcCfFV2Ayx83x8Oh7ZtyxbNx2/6qoctr6aedfKzsQB/+EUAAEgg6wEGAOApEWAAADQgwAAAaECAAQDQgAADAKABAQYAQAMCDACABgQYAAANCDAAABoQYAAANCDAAABoQIABANCAAAMAoAEBBgBAAwIMAIAGBBgAAA0IMAAAGhBgAAA0IMAAAGhAgAEA0IAAAwCgAQEGAEADAgwAgAYEGAAADQgwAAAaEGAAADQgwAAAaECAAQDQgAADAKABAQYAQAMCDACABgQYAAANCDAAABr8F8Wvw/Mkkw1dAAAAAElFTkSuQmCC" alt="" />

,but真的吗?看下图时序

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABAkAAADJCAIAAADOwvxxAAASEElEQVR4nO3dQXLbRgIF0BxLpa1zgMwBkqWrJrMfHyAX0AFygMw+5fV4PzqAy2sfQFvJUs8CEkmRAAg0utEN9HvlRcoiQfRnp6u/CQo/BQAAgBB+Kn0CAABAFXQDAAAgBN0AAADo6AYAAEAIugEAANDRDQAAgBB0AwAAoKMbAAAAIegGAABARzcAAABC0A0AAICObgAAAISgGwAAAB3dAAAACEE3AAAAOroBAAAQgm4AAAB0dAMAACAE3QAAAOjoBgAAQAi6AQAA0NENAACAEHQDAACgoxsAAAAh6AYAAEBHNwAAAELQDQAAgI5uAAAAhKAbAAAAHd1gPT+1qnTwe1b6vS2mdPB7Vvq9LaZ08DtX+u0tpnTwe1b6vS0pb7BZj85B7jeyWs0OfAUtZ9vy2HNrNttmB76OZuNtduAraDZb3WAnmp3Boe2xZ9VysC2PPauWg2157Lm1nG3LY8+q5WB1g50wiUlLqhLIofFUGx9+Po0H2/jwM2k81azDbzrZNZnEpU9hb0QqgeREKoEcpCqB5ESqG2yeSSyBtOTZkUNa8gxCyECkQQipyVM32DyTOAghKWF25JCQMDtySEueHTkkJMygG+yAeRyEkI4kT0kjFUkeiCIhYR6IIhVJdvLlIN81mMcdOSQhxlPSSEKMp6SRiiRPSSMJMR7oBr0+fzy7FcTt3bfBh338PH6wb3e3g0c4vtK1o/Qwjw9EsZwML8lkORmeEUgSYjwjkOVkeKAbnLloBWMFYWk36H4SVwyCefyeNBYS4CWZLCTASzJZToaXZLKQAE/pBqeOxeBss374wfsd/qJusLAYBFP5PWksIb0hkllCer3EspAAe4llCemdyRTI9lJ+LQADF/+8beVPd/Lx3WB5MQim8gWBRBPdEMlEE90QySwhvSGSiSa6S7pBCOGwWx/Zq78+4mSTH9sN3j6GUAzSkkkcuY2TTxy5jRBONNGNEE4cuV3SDUJ4264PfGYw/qSZ3SBFMQim8gCxRBDaOPlEENo4+cSR2zj5RBBaL90gTPnUoM/8bpCoGASzeYBY5pLYFFKaS2JXiSiC0K4S0VwSG5IjmW1lHfWxwdxucPyq89wX6mE2D5HMLOKaQkqziGsKKc0lsSmkNIu4RugG+bvBmWXtwGweIZzpZDWdrKaT1USCmkVcEwlqOlmN0A1G7082aG43uL37luZXFJnN4+QzkaCmk9VEgppOVtPJajpZTSSocbpB/u8bnDzOnQ1yk88UUppLYlNIaRZxTSSoWcQ1hZSuSh7RxhKfVA5evzBweFD8/Q3evnoQeWmRCX2ViK4S0VwSu0pEc0lsCinNJbGrRDRF691gSjk4rwaL7osc3w5M6CmkNE4+ceQ2Tj4RhHaViCIIbZx8pmi+G1y7L3Lfj5d0g/hLi0zoiQQ1Qjhx5DZCOHHkNk4+ceQ2QjgT6Qbh+G/559v1s28Tnz0+thvEtgNzeiJBDZHMEtIbIploohshnGiiGyKZ6dJmtdHcj/Xg0sX2fuzBxx3/2O9AimkH5vR0suolliWk10ssS0hviGSWkF4vscyiG7y5vCNB/85+eTcIc794YE7PIq5LMllOhpdkspAAe4llIQFeksksusEGmNNzSeyMQJaT4RmBLCfDSzJZToZnBDKXbrABpvVcEjsljVQkeUoaSYjxjECSEOMpaURIGJr0szCtIwjtQBSpSPJAFKlI8pQ0UpHkgSji6AZVM63jyK0jh7Tk2ZFDQsI8EEVCwuzIIY5uUDXTOproghBSk2cQQmry7MghLXkGISygG1TNzI4mOgnkIFUJJCfSIIQMRCqBJVKl5z1Iz8xeovH0Gh9+Jo2n2vjwM5GqBHJoPNXGh7+cblApM3uhlgNseey5tZxty2PPqvFgGx9+Pi0H2/LYk9ANKmVmL9dshs0OfAXNZtvswFfQcrYtjz23ZrNtduAJ6QaVMrmXG7qD9e6VDn7nSr+9xZQOfs9Kv7cllc5+z0q/t8WUDn4PksTonQAAAELQDQAAgI5uAAAAhKAbAAAAHd0AAAAIQTcAAAA6ugEAABCCbgAAAHR0AwAAIATdAAAA6OgGAABACLoBAADQ0Q0AAIAQdAMAAKCjGwAAACHoBmv6CapU+v8MuK70/yUAG5BmvU1yFGC7Uq0mkI9ZCrAOqy20zq6LypmiAKux4AL2XlTN/ARYjQUXsPeiXiYnwJqsuUAIdmDUyswEWJM1FwjBDowqmZYAK7PsAq/sw6iNOQmwMssu8Mo+jKqYkADrW7Lyfv54dseF27tvgw/7+Hn8YN/ubgePcHyla0e5OOCok6O9vsLA608eBWyc3Rj1MBsB1he38l60grGCsLQbHDb58zbmUd1guB3oBjTBboxKmIoARUQsvsdicLZTHthfL+oGkcVg+IADTtpO/yvpBrTCnowamIcARcxefMcvvnnbyp/uoeO7QXwxGDjgsO4kb29vh15ON6AV9mQUZxIClDJz/X3drY9skV8fcbInj+0Gb/+UH7kfj+kGHz8PDlA34NXz33+XPoXs7MwoywwEKGXe+vv6r+sT99vvnjSzGywsBpcHnHySA+1AN+DV06dPu68HdmYUZPoBFDRrCb7+qUGf+d1geTEI8d1gYJi6Aa9eHh4eP3x4vr8vfSJ52Z9RirkHUNCsJTjqY4O53eD4reC5L9R3wBHvDv/+JHvagW5Qr6ebm7Q/uur5y5fHn39++fo1+gj1sz+jCBMPoKzKusHY9n2mJd3g8NHF+V/oBrV4urk5+zP0sJEjLDmBH3d36gEkZ9YBlBVxTVHubnB7923hryiKONnLkzwrQrpBSRObwNCDe5+1sBu8PDw8/vLL42+/vTw8LDlOzezSWJkpB1BcZd83OHnc0nawtBuctQPdoCLTt/WXjzz8zcJuEEJ4vr9/urlRDyAV8w2guHkL8aRycH45Tvz9Dd6+ehB1adHybvCuHegGFamkG4QQftzdPd3cPP3rX8sPVSd7NVZjsgHUIPn9DWKv1O/fyi9oBym6wUk70A0qcvUSo5ELitJ2g+7Koqebm6c//lh+tDrZsbEOMw2gBonvi9z34yXdYMGlRWm6wYQ7JrOK6d83CH0FIFM3CCG8fP36elY7rQd2bKzANAOoRMRyfPwlo+93ymffJj57fGw3iG4HqbrB6YB1gzpU1Q1CCD/+/LOrB3u9J5p9G7mZYwCViFuOT3bLFy5242MPPm63x7byUe3g6u8wffdyowXmeCjdoAqzukH331m7QQjh8ddfd1wP7NvIygQDqMeCFfly892/s1/eDULMFw8SdoOe36JESVd/RelZARj5USrHK4tubnZ5y2S7N/IxuwDqYUWmdlfvVHD1iWd/efYfqRyuLNrlPdHs3sjE1AKoikWZ7ZmyrT/9xGCFzw06hyuL1AOYyLwCqIpFme3p3daPF4CRGx0k9PL9++OHD6/1YHf3RLOHIzmTCqA2W1uXr3x54eJrDOzReDfoLQmXz8rRDUIIP/7663Atk3oA48wogNpsbV3WDZjwucGUv8zUDUIIT7//fvxqxL5umWwnR0KmE0CFLM1s0sQvKA8VgHzFILy/smh/90SznyMVcwmgQpZmSO/0yqKd1QP7OZIwkQDqZHWGLJ4+fTqtB3u6J5pdHcuZRQB1sjpDFi8PD++uLNpRPbCrYyFTCKBaFmjI5fnLl7NvROzmlskTfyUADCk9hQHoZ4GGjM6uLNrlPdEAgN3QDSCjyyuL1AMAoFq6AeR1eWXR/u6JBgDsg24A2f24u1MPAID66QaQ3cvDw+Mvv5zfrG1ft0wGAHZAN4A1PN/f99zLeUf3RAMAdkA3gJVcXlmkHgAAVdENYCX9Vxbt6J5oAMDW6QawnpevX3s+OlAPAIA66Aawqh9//tlfD/Zyy2QAYLt0A1jb46+/XnYD90QDAIrTDWBtQ1cWqQcAQFm6ARQwdGWRe6IBAAXpBlBG75VF6gEAUJBuAGW8fP/++OFDbz1Idcvkn6ZJ8lqQ1cTJnE/pADav9Bu4SaXftG0r/e6VkSa6JEcBIvz466/+bnByT7SXh4enf//75fv3uQefuEakWkogq+ITtfgJbJ0A55LYQgKMJjgo6en330fqwfOXL48///x0c/P83//OPfL0ZdECSuVqmKI1nMN2SS+O3KKJbgnZQUljVxad/PlxdzfrsLOWRWsolatkilZyGlskujhyiya6JWQHhY1dWRT7DYS5y6JllGrVMznrOZNtkdsS0osgtIXEB+U9ffp0tR5MP1rEsmglpVpVTc6qTmYrhLaE9CIIbSHxQXkvDw9Xryx6/t//Jh4tblm0mFKh2qZlbedTP4ktJ8NZxLWcBKEKz1++XPnKwX/+M+U40cui9ZQKVTgtKzylmolrORnOIq7lJAhVeP777yuXFX36NOU4S5ZFSypVqXNC1nlWdZJVKpKcSFBJCBHKu14Mbm4e//GPq8dZuCxaValKtROy2hOrjaBSkeREgkqinhC/3d2e393t9u7b6FM+f5z0hO5hHz9fffGB1zu8zOghINKUYtD9uXoHtOXLooWVStQ8FWs+t3pIKS15XiWiVGrIsacVnOrbkV+0grGCsKgbHE5OMSCT5/v7p3/+c0o3GL8DWpJl0dpKJSqfipWfXg1ElJY8rxJRKsVzPBaDgT395b586O+PP3h/qPhuoBiwmikNYfwOaKmWRcsrxdU/Ces/w7Lkk4NURwgnocJRvu3mB/fer7vzk13761MGrv95282fHjCyGygGrO9KQxi+A1rCZdEKS3GbmISbOMlShJODVEcIJ6GiUV5u/Ht0O/u3x7w+ZWS7PtQmZnaDq60FshlpCENPSbssWmQpaCvTbyvnuT7J5CPbXmJJq2Sa1/f5F94XhVlPmtMNFAMq0NsQeu+AlnxZtM5S0Iam34ZOdU1iyUe2vcSSVsE0I6pBxFPC7G6gGFCTs4bQewe0HMuipZYitjXxtnW265BJbhI+I5DkCgYa8RlA1McGs7rB8XvOc18FMjo2hIs7oGVaFq22FLG5ibe5E85NILlJ+IxAkiveDXq27L2/0/T27lv2btD3klCP5/v7pz/+OPvLfMuiBZeVbXHKbfGc85HGOuR8IIocineDng348EZ99BZlV15oYjc4eR3XFVG9rMuiNZeVbXTKbfS0cxDFOuR8IIocNvB9g5NCkPn7BicP0g7YhNzLomWX1Wx3sm33zNOSw5qkHYSQzQZ+T9HphwWTnvL6nYHDgyLvb/D21QOXFlGpFZZFKy+r2fRk2/TJpyKENUk7CCGb+u9v8H7fPqEcnFeD+PsiawdUbZ1l0eLLCrY+zbZ+/stJYH2NZ9748LOq/b7IlwVi/L7IfT+O7gYuLaJeqy2L1l9WsINptoMhLNH48ItoPPPGh59V8WRPvnh8vv9+953kkx8ef8/o+2ecfaH47PFR3UA7oFZrLouWYLLaxwTbxyjitDz2sppNvtmBr6OKcI+b/V49W/axZ1w8/MrhP34e/wVI2gHVWXlZtAqT1W4m2G4GMlezAy+u2eSbHfg6Kgq3Zws/vhu//F2n/Zv7hd0g+OIBtVl/WbQQk8meptaexjJdm6OuR4P5NzjklckXNqbIsmgtJpOdTa2dDWeKBodclQbzb3DIK5MvbEypZdFyTHL7m1T7G9G41sZbp6behaYGW4qIYUsKLotWZJLb5aTa5aCGNDXYajX1LjQ12FJEDFtSdlm0KJPQXqfTXsd1qZ2R1q+R96KRYRYnZdiM4sti8RNgT3Y8nXY8tFONDHMTGnkvGhlmcVKGzahhWazhHNiBfU+kfY+u08IYt2X378juB1gPQcM2VLIsVnIabN3uJ5IBsrLdvyO7H2A9BA3bUM+yWM+ZsFEtTKF9j3Hfo9uuHb8vOx5ahWS9ntE7sMEVpefvUekk2IPSs3gNpTPOq3S69Cg9KfIqnW5DZA0AAISgGwAAAB3dAAAACEE3AAAAOroBAAAQgm4AAAB0dAMAACAE3QAAAOjoBgAAQAi6AQAA0NENAACAEHQDAACgoxsAAAAh6AYAAEBHNwAAAELQDQAAgI5uAAAAhKAbAAAAHd0AAAAIQTcAAAA6ugEAABCCbgAAAHR0AwAAIATdAAAA6OgGAABACLoBAADQ0Q0AAIAQdAMAAKCjGwAAACHoBgAAQEc3AAAAQtANAACAjm4AAACEoBsAAACd/wNeZOg7la+bbQAAAABJRU5ErkJggg==" alt="" />

该有的还是会有,我们可以看到时钟在clk高半周尾部使能的时候,可能产生极短的脉冲(毛刺),不言而喻,这个电路没有达到理想效果。我们改怎么做呢???如题,“门控时钟”就是解决这个的,电路如下

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA68AAAEgCAIAAADUg9KaAAAf30lEQVR4nO3dzVnruhoG0NRFQamDEpgxODUwpQCKYEIJuwifgZPgH8mWHf9IaK2Hwb2Q2J+FUd6jLUuXBgAAanU5uwAAADiNNAwAQL2kYQAA6iUNAwBQL2kYAIB6ScMAANRLGgYAoF7SMAAA9ZKGAQColzQMAEC9pGEAAOolDQMAUC9pGACAeknDAADUSxoGAKBe0jAAAPWShgEAqJc0DABAvaRhAADqJQ0DAFAvaRgAgHpJwwAA1EsaBgCgXtIwAAD1koYBAKiXNAwAQL2kYQAA6iUNAwBQL2kYAIB6ScMAANRLGgYAoF7SMAAA9ZKGAQColzQMAEC9pGEAAOolDQMAUC9pGACAeknDAADUSxoGAKBe0jAAAPWShgEAqJc0DABAvaRhAADqJQ0DAFAvaRgAgHpJwwAA1EsaBgCgXtIwAAD1koYBAKiXNAwAQL2kYQAA6iUNAyt8f1xeXy/vXz9N0zTN58fr5fX15evfVof/+Xq/vH58bnW4HbSXfPu6t0PTNM2/r5fXzo8+vrvv+vl6//1R3hcIUA1pGFhh1zR8C5RZh8VgGu6H3UDqlYYB8iMNAytIw+NLvo8K/37zMU7cHyFumu9r9hcIUA1pGFhBGh5d8m20eBB8b9fy/tZrG2kYIB/SMBAy82/682n439t7cFh02v1dwVNPTsntvv363dwT5/Ag3RkO19EBOhfSq2Qc9EeXfDvd6Ji34/SPIA0D5EMaBobGkXQ0ujmXhsMDpWtOfYuMvXm60Zh+T8Nf/dx8e2U3H4dj7v1CvsavHJxreMnx8ezbf1f0mkIaBsiHNAz03UeFH/E3NMo7mYbXRuG7cbJsT9cbeb1X1V3PoRumH2fvjSg/jhl8e2TkODT9d5iGbxWGAm6/rdpvScMA2ZCGgZ7uZIPH9yLxNJSGn43CgdOFSgp/P5xxR/k+clGdNDw812j6bzgN988b/5E0DJAPaRjoSnyCLZKGN4jC4xra/xsKmm3M7cx2CE7SjUXVNpL2IvKt/tC5guPf0jBA+aRhoGsi1cVfNpzUO/v2aYM0fJ8mEf36Dd+RUeT2COFlzgJpOLg4xmD6rzQM8FdIw0DXk2n44yOytMISJabhiTF1aRgga9Iw0PVMGm6T4sTzZImCaThpvDnHNGxNCYC8ScNA13PzhttDrFppOF7Dgs04tknDwcpn5g1bbxigVNIw0BNMdaOUOb3e8H1JspXzJYbx91ZSwhYYG6Xh4dZxCWtK2IsOoFTSMNA3Xo/s/p2kFdZ6b1n3ON1oMPixMV4gffaC5lZpuP/9e7gfn70X0MfLEocWKu6cWhoGyIE0DAwF96LrR8z5nZmjA7oJupvG3VJpZC+6uTHsbrXp84bf3wPnCu3TMbi6/nbWj69x6pWGAfIhDQMh/WA3ym3zafjxON1o1kGKzgZygT3hoilzw6foAom8K/q83aDI8ORpaRggH9IwwN3EmhKrXxkiDQPkQxoGuJOGAeojDQPcScMA9ZGGgZ3FHoBLeNrsnFLT03DwAbsJM7OxATiBNAzsTBp+kIYB8iMNAwBQL2kYAIB6ScMAcIr+ut3Ns09nhiQtgA2Vk4YB4BQ7p+HkzRGhctIwAJxi1zR8HxX+PdpjnNgIMfRIwwBwij3T8G3Zk0HwvQXiVfulw58lDQOQocGE18Aydv/e3mPZ8faj63fKcVZo90+5fV2/m9iOKjNr6iWl4du1LBzQvVV4Hb5potGgWtIwAJmJTHgdjWiO0uTNLQF/vCUe5/naPj5GafieYidOnZCGw0O8s+4tMJ4ifKvfZAn4JQ0DkJfxuGZsfLR95TDdtoHv5esr+TjJAlNvu6n3N33eQ/OjttCp59Lwyij8OHLwgbnYf0JAvaRhYGOXapzd0n9VMK5FBjvjUwve374WHCdRLJ7e9yZ8HLYzVWPi1JNpOHKucPj+reT7O3jkX9IwDOnNgY2dnVGPc3ZL/1WLlj4YZ7v27e9fP9svoRAeiv4t4xFPEzN3PA1HonBvvvIoE/97e7+/RRqGBfTmwMZqSIo1XOOZ7kOtKTN9h9MqAsOrG80Ynsy4/afoEhNnJA1Hn/n7/uheQnAG860dpGFYQG8ObKyGpFjDNZ4sGPWCKyH0HwsbDt+mH2feY9Q58LOt0/Dtsbz+XIvvr3Ga71xgJ+tPBHdpGIb05sDGakiKNVxjLgbDpaMlw/rJr416oakR88eZddjYcHe2w7opztaUgAX05sDGNk+Kn9fmchl9vTRthHh7Cfz05W3u7Z0jrCANH29iOYjfR9baNDmZdJ9ZViI+b3iQPp+eN7xRqdYbhhR6c2BjO6XhQa643uPs28sw1/68NZdLc/2cevuTpOEdxQYvJwY17z/qLfq74jizkteUCIbR0UITs+sN3x8EXDGSbS86SKY3BzZ2TBpuI+/bTyANN/2ILA2X5h4Be+OX07mwu+HcI/+tOE5ybd2U2ZmDMbHe8OM7qSus9d61YprvuNTtF9mAv0FvDmzsmDTcfN4GgKXhPyiyF91UjHtE0m7MXXGcdbXdd/qY3Ytu8FRcys7Mt2HmFXMbIpe/cq1l+Lv05sDGchgbvl6k4dJ1h3tTRnNjz5wtPU6S3rq/1+9m+BTdXT+PjmpLSsOPS1s1vWFw+UaFIUBvDmzsiDT807xcmsu1aZLnDY+/rk8EZGk4O/fdmE+aD/vcFnfAqfTmwMYOWlPievtpcE2JbtI1NlyD+27M+4bh0H7LTdNYtgzKpjcHNnbQvOG7wdjwdbR0mjRcgfgyw9u6z07uxe7HdIgt5mAAx9ObAxs7Nw13J1GkvH0daTgT3fm7awaGR1s3x74GCwkHvqzgC8XSmwMbOzkNW2+4Jr/rNqwbl12chsPvMl0YiqY3BzZ2ehpu2vkS97dIwwBM0JsDG8shDberEbffj+7MfGne1m7NLA0D/Bl6c2BjNSTFGq4RoBJ6c2BjNSTFGq4RoBJ6c2BjNSTFGq4RoBJ682wl7tgJ2akhKdZwjQCV0Jtnq8g0fMnP2U1SoxpavoZrBKiE3jxb0vCWzm6YutTQ5jVcI0Al9ObZKjgN/5cNgfgUNTR4Ddd4pCP+m9ivDIjQNZzqsbt9YDejpDR834fpY9UuTM1ol9HRcdoKX77+dfd8GhTWkVsabvksPFgNTV3DNR7psDQcdPbVAyfTC5ymHy5vX+9vj6ybkIZvu4OujcKRLUl7ofyWhj8+XgKv7FR70360nJ1+A3z4HSnYyMEtMF7eTilwzuf8Dh1upG0d1p7CMTDmz/4k91HhR6AcjfLOpeEno/Dt+K+v198D3GvonLQzet3Jvo8R5eHZs03DLR94x5hIw71///hpXi7N5XpgZQneXvoJuE3GoyLdRds6tz1lYqicP/hz3HLntRsmbxHzPjQ7mYafjcLBAkLfH6X2/veH8yUyT8MtH3h7S03DzS1rXmN7Lh/u5y00GBwq0v2zrXzaUyaGCvlTP8Ug+AbF0/DTUfheQGjub2ei8O//DbxyVF7TNIWk4f8E4p0tSMPtWOxLE5qMcIJrZKx6XKSbZ1u5tadMDFXxR36KcJScec1wmu/021MKmPi6R+1bGh4n77LTcOuYT7usPlOPvOTBN2NpOPb9E8QHqsdjxru2YVb3TNOpZ+9T7Hf8dWRiqIQ/71M8mYY/Pq7DKb+rCqg9Df93yNN1WX2aSsNTpOGIatNwK7dfB7A5f9uneCYNt8H0Fmcn51o8WUDTNH8/Dbcu7GBwx/zJNMy2DvtVr1BEkcA6/rBP8dy84fYQT600nFJA0zTSMOsN7hhpmFmH/arXKaVOYCl/1ef4Dk116K/nMLve8H2Zs1XzJW4FjHe2G5ylgjRc0IdxKYKNGUu9sQfXTuEpurOU0p76CviT/EmfZLxy2f07SSus9d6y6nG6x0LCge08xlX9zTQsB+9kQRrOe4W1Wwj+DGwU4rbZVkHtWVCpQCJ/0qcJ7kXXGehN2pk5OsSbIrIXXW+w+e+mYVF4P6lpOLKxxbkGu2+0/3e8Bpw7Z1tltWdZ1R5vej7Mic5uGPLl5jhVZ6e30SzepDT8eJxuvElymseucsEa/mYa1jnuLdi2wZ2Z8xkV7vkMlDqI8u6fbZXVnjqQabun2uec3Tw5Swwefb2RtW4qGASM5zdJiB9qKk0lcVuwpbavOTvuRukTj/Enm/fzetwKaxUqrj11IxP2DbMbObuR8rRdGu7H02dyatKhpGGy0vYyZ4feMP3gYWpo5Bqu8UgltmeJNR/jiDC7hbPbKUNPpOHea+5DuePn/hePEC87VDt9VBrmZG0Xc3buHdL9HayGpq7hGo9UaHsWWvbejkiy2zm7tbKyURrubY/wcEuxyyZ2LjyUNFy92CNxm/w7RbK2czk7/fbo9Y5XQ2vXcI1HKrQ9Cy17b0dk2E0lX9lg9urwyZnbw/Gh7NhZQXXmIKvdnqrvPA0fiIYzMwqS0vBwu4PRa4JryDaT7TNzUcmHkoarl1MaztCO18xIDW1ewzUeqdz2LLfy/Yx74LNHRW6e+piIzF7tD0/G9nm973j1lnKQ5cK1fXz0o2FwJauZ+lPGfSObIQTCRvS5/JjFh5KGycI20XVrZ7dKdWpo9hqu8Ujltme5le9n3AmfHYN71n1ejAcpgzvCti8bpts2ur18faUdZKHAPNpu8L1Fw9EuB6FTz6Xh4LyFYRq+LXUViqSx/1qIWXwoaRjIRQ35oIZrPFK57Vlu5fvJPA3/tyYQB7NXaOQyPrXg/e0r9SCLhGfW/v6LcXvk/ma3sVNPpuHpEw3TcDDyrkvDCw4lDQO5qCEf1HCNRyq3PcutfD/5p+HWkkycviTCOKW1733/+lm9rsLk+YKj0b+VtNEwMXPH03AsCjfSMEBIDfmghms8UrntuV/lc6OVmx38AGfn3qjpsntNNno4JzbZdzinIjC8ut2M4cmY24mGiTE0koann/mThgHGAh8kf04N13ikcttzv8qjsWzrgx/g7NA7Y7r431YLPqw2XiGh/4DXcOw28SCpHgPPgZ9tmoZvz+SNl3dY8BTd4jS8+FDSMJCL4UfIX1TDNR6p3PbcL0H+JWfH3STTl9D7rQ9GTIcBsZvh2tAWn2AQPUiiY8aG2/ojz7RZUwJgLPDh8efUcI1HKrc990uQf8nZQXfedP2x335sRYjfR9bapDiZdJ9cViI+b7gbJZ+eNzxRqvWGAcamPz/+hhqu8Ujltmehle8TeqPOzrpTpiu/tVdsUHPu+70Vf5ceJFHamhLBWDlaaGJ2veH7g4Dd49iLDmCs9ynyR9VwjUcqtz0LrXyf0Bt1duKNmi6702D3FNgbjAxFw8GPeklu6UEShZaq6EzDiK03/PhO6gprvXdN71c3Lmn1ehrLDiUNs6FVO5XD3eiD5A+q4RqPVG57llv5fopIw8k5+C6yF1003j3yaDfmLj1IosiTeV8Je9H1U3jSp/9tmHmwJccgIUSudJBTxyPWgTHstEN13y4NswlpmKcEP04+r83lEvp6aX6a5u2luVyat5/RW16awHo+7aGuO17CLBloW4W2Z6Fl7y3/NLw4Ct90R3xnB3Rj+6gtOsgCtxzZOWYgGvaT5ai2xE//26XdhpmjCWFwpdGh3Jk0nHao7tulYTaxPg1PdzFn2be1GAk2exthY31Um4YHATechn+al0tzvQbS85HcWtsqtD0LLXtv40747PT767gPi/tuzOeNIj29y12inMbLpGE29NfScGvfNqMj2ODzafjaXPsBN5iGf96ay6X5/GleLs3L25ZlL+Km2lah7Vlo2Xsbd79nZ+D//jsyBzdN87sb8+4RMbTlctM0Tz+cl04aZs5gbH+41N/EaiOd+3vmICtN/XNJUhoOrrSST8f3IBBvK+WzZHUa/nnrxd9gGr7eh5Bj8yiO4Y7aVontWWLNx5jOnRnaoQ3iywxv7j5BuZe8Hx/xG03DmC9AGiYsMu+7/1+KsQWx7//A8ZZykMWCU+k7x0xIw5ElXdqe5ewAHLBzx1eLxE+UYDunpOGmaa6X5vrZecsg7342l8cLuv/7cO6lbRXXnvqTCZsk1GNsfu3dybsrP6lHuzfHvu6ZbzQRufMg3REJtVfwRgN2S83Mh57nL3kv45ngwcHU8LrZ9/lGX2kHWWa0zMromHNpOLa6YcZp+L/RP5Otbr9qTTTd4EfBl8Weomvj7CMNN5+/CXichgeR+nres3Tuom2V1Z66kWlbR9a97HHtv4NNqwdlF6fh8Lt2ny4cPrU0TE9w0Dc0pT0+CeH97Sv1IEuE5hgNjjmZhuNRuMk7Dbf27gr/qtlG674g+MrEseH2f7cTgodpeDRXePqYu3ILbaug9tSBzNohuG7s7BYiO+6JnaQvND3Oze17379+Vq9WPV/YZJiOp+HJKNyUkIZbusWlUtrq8Zrgi9PTcDsF4nOUhtvn58ZfpzxL5+bZVintqd9IsVuI3cDZbUOm3Bm7Gf2zRWwK0XBORWAgdrMZw/GZypOvGZYRfXvb3ZyddZMc1kUuPcuuVa0+eMpbHq8JvnhBGm6az2vz8jZMw9dL4LG5t5dznqXL6pN17zv5sD+T/Y6/CYkqUWIwPd7ZDUO+3Bx7imwPM8yz/WVQhjOJEw+S6sk0fNt1PTYjqu1xzg66CxzQUS49xa4lrTv4JsUvSsO3SRHdpBt5Zq4dMD7+WbqsPlz3vo0PCBNZtWdMEUUCK/jDPsRgbDWyycrHZzO1LMvMQRI9k4bbqmL76zRNgWm4lTiuULmU22vi9cvS8OOpu+4TdZG3n/IsXXqbHOCM22EXZzdkVP4VAs/wt32o2IoQv0+2tblzMuk+t6zEc/OG5wpoPzDODrdrnPTpX5KU22vi9dGdmS/N208gDTfdqRGTe218nrEvXXqbHOCM22EXZzdkQP4VAs/zt72P2B4wc9//6C4cvfQgaYKbgPcXmphdb/j+eN8otbcfGGcn22Xy/LTLqphmi3nDf0yG15hhSekyLD7PngHYg7/wndzzYm+CbzRE9lfPfsTcpQdJM1pv+PGdpBXWem8ZzrgoLg1n+2mXW0nS8ECG15hhSemyKl4Ohtr4O99NZC+66JjuY1pwN+YuPUia4F50nfMm7cx8G2Puf7OgNJz5p11uhc22VfcFuRW/hwyvMcOS0mVSvBwMdfLXvqvRfolTA7qxp9MWHSTZ1MYtSWn4UXB30bdS0nD+H3gZ1jbRYoMfZVj85jK8xgxLSndW8ZeI4ysBTuRvPhv33ZiP2FV8N/mn4VI+8PKsMBYdBtXmWfy2MrzGDEtKt2vx0/etHAz4y8/FfTfmosNw1mm4rM+8bItMyRDZFr+hDK8xw5LSnZKGdzodUBzdQSbiywwXJds0XNxHYEGljhVdfKIMrzHDktLFAuuGzr5EIF86iJPdnkV7Ztfl0e7Nsa/JNYa3kWEaLvTjsLiCu4ouPlGG15hhSemkYeBEOoiT/S7vsPrZuPzScJ52v/hNlVjzQ9HFJ8rwGjMsCaAIuk62dHzGTXF2q6xRbuVN4cUnyvAaMywJoAi6TshR0clmv+Kv3S2d202b7z6vw+80TfP2EtgIOrbD8yIZ/oIyLAmgCLpOyFHRyWaP4n/ehkG2Tbpv9/wbTcP9b7bHuT49ayjDX1CGJQEUQdcJOSo62Wxf/E/zEhrTvXZGiBPTcOybS2X4C8qwJIAi6DohR0Unm82L/7w2l0szHs/9+fwNtdJwhiUBFEHXCTkqOtlsXvx1NEt4LD0NpxxtVoa/oAxLAiiCrhNyVHSy2SUNX2deY95whiUBFEHXCTkqOtnklYZHa0o8H4WbLH9BGZYEUARdJ+So6GSzefEpM31TxoY3mSPRyvAXlGFJAEXQdUKOik42xz1F15n2kDRT4qd5SRhmTpHhLyjDkgCKoOu8+/l6P2Tv4pjv6+vr5SOwO3No4+VAnT9f75fX18vr+9u/2Bk+Lq+vl/evn8C7gl/hQ31+HLPJc+WKTjaHrbDWDbvmDWdYEkARdJ2tf18vkZR5jGDEDOXgzlcs1/a//2txGo4dLRrc7cy8nXIrb/LefaO5b2j35N96hr+gDEsCKIKus3VuGv7+uLy+vnx1R2L/vb3f8+godwaDbzfX9g/VO0s4DQejbfv6UCBu33UNvOn4pJto5jeQn0LLbu1VfDvPYWJn5tEDc+OXNU3TfEa+v0SGv6AMSwIogq6zdWYaboNv79Tz0x7aAdpOJO2P8obeuDQNN49mGQff72t42Lj9PP4vJ4Vm4uIK7iq6+EQZXmOGJQEUYUXXeU9I8X9Jv41rhkYobz+6fs0eZJnPj1sE7MwuuOfLmYI7o7DxWbkT2kD58vVveKjEixoPDEczaOC8j7Pcc+3XrYbx2Vek4dFZBt8fVZhhGv6vH4hLiQsFlTpWdPGJMrzGDEsCKMLCrjMyzXQ0EhkKXk0zCqYJz2wlatPw9aNT3sd3WsEbpeGPj9ClzV5Ue/bey2YT6kQZl4/vRyMP/2tkVRq+D0KPLqQ9y/BXnGcabpUViEupM6jo4hNleI0ZlgRQhGVd5/Bf53+j5DBOhSNUN5smHGSBx5BwPwImF/zETInORXWu95H7py8qkCnvw+cLG6Oba8MTLVam4Vg9gRyfdxpulZKJ869wQtHFJ8rwGjMsCaAIi7rO4IhvJEe28TT6ZFjaQdLd0vDgsOkFb5CGI9F/cr5EKIxGxmITy7gd6l9gvsTKNBz8Vf5+v5+S80/D/xUSiDMvb1rRxSfK8BozLAmgCIu6zsTxztY4ew2mSTwxEjx2S8PhEd+Ecz2fhtPm6QbLDo1nh9JweJ7J7ZXDXDueL7F1Gg69t4g03Mo8E2dbWIqii0+U4TVmWBJAERZ2naMVcBcsevAIVUsOsqyw2Pjl/LmeT8PjQDmfhoOTEDZKw+NB6+fScGDmRnvAUtPwf3k/XZdhSeku1Ti7pXsyLAmgCMu7zuBzacEFbvtJqxfy0g+SKJaGU8+VURpOnzccatJeGf35EhvPGw4esP08PjvlLpNnuMmtnkWOzKPnOrulezIsCaAIT3Sdg2HXQFrqRszAOGLaQZYUM52np86VURpOX1NiNg3350usS8O3IyQuYNx+Hp+db9fILeLkUwmlcM8ArLNB1zmxIsRv2ov+a/v8QZKkpOGpc+WUhqcCaP8E82m4O1/ia8v1hn8vsOCZEg+5ReFGsmE59wzAOku6zpm8FUpU9x99XO9Zc8VBUgTT8IJznZOG5x5Qmw7Et52TZ9Lw9J4ga/ei+31vv/ji0nC2//CdWz3kzz0DsM6qNSUWbJzWffCrjVwrDpIgHCvTz3VSGk6LsMOqejOhh3vRhVqw+1tITsO/Z4lk5WJXWHvIMwe38qyKnLlnANbZZi+6qTHdx2zdR2xacZBZc4Oss+e6rYAxPyI78kwajuzoNld8aOrz9Cjv76GCaXjiK1p/cO2LUtJwzjm4lXNt5Mk9A7DOiq5ztM7XzIDu7R/0g7tdbPD8XGtq3nDiuTovW1TMU2k4vKNb6Di9r8Dr56aahPbjmEnDkyPlbXMNT5d/Gs52asRA5uWRIfcMwDr7d52h2aV0fH+U2D6RxyIzT8NF5OBWEUWSFfcMwDq7d50JY5+1a5to/a7UZ/i+hoe9s03DBeXgVkGlkgn3DMA6e3edkWWG6SlteLgd7w/NJ8kzDRcXhRvJhuXcMwDr7NV1rn8orTXaUXnV3NZVTjn150dBw8Pf1+h/4eSWhkvMwa0Sa+Zc7hmAdfbqOn8XCFv3eFxtaXgyYuZlMrhfcnVsG22g0LI5kXsGYB1dJ1s6L+5Gnd0kKxVdPKdwzwCso+uEHEk2LOWeAVhH1wk5kmxYyj0DsI6uE3Ik2bCUewZgHV0n5EiyYSn3DMA6uk7IkWTDUu4ZgHV0nZAjyYal3DMA6+g6IUeSDUu5ZwDW0XVCjiQblnLPAKyj64QcSTYs5Z4BWEfXCTmSbFjKPQOwjq4TciTZsJR7BmAdXSfkSLJhKfcMwDq6TsiRZMNS7hmAdXSdkCPJhqXcMwDr6DohR5INS7lnANbRdUKOJBuWcs8ArKPrhBxJNizlngFYR9cJOZJsWMo9A7COrhNyJNmwlHsGYB1dJ+RIsmEp9wzAOrpOyJFkw1LuGYB1dJ2QI8mGpdwzAOvoOiFHkg1LuWcA1tF1Qo4kG5ZyzwCso+uEHEk2LOWeAVhH1wk5kmxYyj0DsI6uE3Ik2bCUewZgHV0n5EiyYSn3DMA6uk7IkWTDUu4ZgHV0nZAjyYal3DMA6+g6IUeSDUu5ZwDW0XVCjiQblnLPAKyj64QcSTYs5Z4BWEfXCTmSbFjKPQOwjq4TciTZsJR7BmAdXSfkSLJhKfcMwDq6TsiRZMNS7hmAdXSdkCPJhqXcMwDr6DohR5INS7lnANbRdUKOJBuWcs8ArKPrhBxJNizlngFYR9cJOZJsWMo9A7COrhNyJNmwlHsGYB1dJ+RIsmEp9wzAOrpOyJFkw1LuGYB1dJ2QI8mGpdwzAOvoOiFHkg1LuWcA1tF1Qo4kG5ZyzwCso+uEvFw6zq6FMrhnAJ6h64S8SDYs5Z4BeIauE/JygSecff8ClEfXCXk5O01RtrPvX4Dy6DoBAKiXNAwAQL2kYQAA6iUNAwBQL2kYAIB6ScMAANRLGgYAoF7SMAAA9ZKGAQColzQMAEC9pGEAAOolDQMAUC9pGACAeknDAADUSxoGAKBe0jAAAPWShgEAqJc0DABAvaRhAADqJQ0DAFAvaRgAgHpJwwAA1EsaBgCgXtIwAAD1koYBAKiXNAwAQL2kYQAA6iUNAwBQL2kYAIB6ScMAANRLGgYAoF7SMAAA9ZKGAQColzQMAEC9pGEAAOolDQMAUC9pGACAeknDAADUSxoGAKBe0jAAAPWShgEAqJc0DABAvaRhAADqJQ0DAFAvaRgAgHpJwwAA1EsaBgCgXv8DG5eScHsGFM8AAAAASUVORK5CYII=" alt="" />

电路时序如下

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABEwAAAEDCAIAAACgVQbzAAATuklEQVR4nO3dUXaqMBQF0I6rA+p4Opo3mQ7G92G1qIBAArnc7P33nlThELJyloofFwAAgEQ+Wu8AAABATUoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkgMAAKSi5AAAAKkoOQAAQCpKDgAAkIqSAwAApKLkAAAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkgMAAKSi5AAAAKkoOQAAQCpKDgAAkIqSAwAApKLkAAAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkpPQR69aB9+F1ie5mdbB96L1eW6mdfC9aH2em2kdfBdan+SWWmc/LuhusVnYoba3bg/8YN3m3O2BH6nnkHs+9sP0HHLPx36YbkMOe+BBd4vNwg61A/R87MfoOeGej/0wPYfc87EfpueQez72Y3SecMzDj7hPlIg5zo7R87Efo/OEOz/8vYlXArsSrwR21Xm8MQ8/4j6xWcxBdiQJ7Ee2EtiVeCWwK/FKYD+yjZlAxH1is5iD7EgS2I9sL0LYjWCv5LATwV7JYSeCjZlAxH1is5iD7GBC2INUr+SwE8FeyWEngr2Swx6kehUwh3A7RImAI+x4QtiDVO9EUZ1Ih6RRnUiHpFGdSK8C5hBuh9gs4PBqRRR1yXNIGtWJdEga1Yl0SBp1yfMuYBThdojNAg6vVkRRlzyfCKQiYb6SSUXCfCWTioR5FzCKcDsUxr+vp19z/fz+ed3q5/vz4+Pj4+vf0icc3/L3aSZfZpGAw6shadQiyVcyqUiYr2RSkTBfyaQWST6JFkisvYnhpd7MNJ0aJadKw7nEG1ttSaMWSY4SSxVinCKZKsQ4RTJViPFJtEBi7U0A94bz1Df+msjDA8UlZ9BwljzJpGgDKwKZlJPhFMlUIcYpkqlCjFMkU06Gr6JlEmtvWrs1jok3VG4PD9pIYcn5e9OoqOFc4g2sCGRSToYzhFNIgPPkU0iA8+RTSICvomUSa28a+60cM33jt9P8laCSklOv4VziDawgxFJCevPkU0iA8+RTSIDz5FNCelNCJRNoV5q7lo51X4vZXHKmPha3VahRFYdYSkjvLRFtJrolpLSZ6JaQ0maimxIqmUC70tqKvrLpjwYl5/5FHA1nf8LZRm5LSGkz0S0hpc1Et4SUtpHbjFDhBNqV1ra8kbOl5AxuNVDlg2qXYEMqGuFsI7eFBLWB0JaT1QZCW05WGwhtRqhwAu1Ka8eUnHu7+fqqV3NCDamA5LOWxJaT1QZCW05WGwhtOVmtJbG34kQUZT8COLDkXDe//Uf5Z9bijKeY5LOKuNaS2CriWktiq4hrLYmtIq634kQUZT8COOY7OaP3V/MboLuT0nKyWktiq4hrA6EtJ6u1JLacrJaIk1KU/Yhg0Vs5T7eZLv0x0PsXdLZ/ai3OYIpMSgsJahu5LSSobeS2kKC2kdtCglooSFAhdiKK97+T87JJacmpUHOCjKT4BLWElLaR20KC2kx0S0hpG7ktIaXlgmQVYifCuBWOqXdzfivO4OHyklN8Q+kgIyk+Qb0lohLSe0tEJaT3lohKSO8tES0XJKsQOxHI4P7Oj3Xk74GHKlKj5FwKvpwTZBidhbjmyaeE9N4SUSEBzpNPCenNk88qQeIKsROxPPyOzYup79S833yu5AzuvbbuU2tBhtFZiGuGcMrJcIZwyslwhnDKyXCGcNaKkFj7PQjq8VdtJt9lqVZyNtacCGPoXCQ2RTLlZDhDOFWIcYpkyslwimQ2iBBa+z2gRIQxdC4SGyWWWiQ5Siy1SHKUWGqR5CixbBAhtPZ7wGYRBtAZye2VTGqR5CixVCTMVzKpRZKvZLJNhNza7wGbRRhAZyS3JwKpS55PBFKXPJ8IpC55PhHIZs2jc+ZOrPnoOS/RDUmjLnk+EUh1Ih2SRl3yHJJGiebpOXkn1nz0nJfo7kSxB6neiWIPUr0TxR6keieKEs3Tc/LOqvnQOTsBXslhD1K9E8VOBHslhz1I9UoOhZoH6PydVfOhc3YCvAhhT7K9CGFPsr0IYU+yvQihhrYZOn9n5dorJ0MJ7Ee2FyHsTLwS2I9sJVCFksMWLr9ynWfY+eEfoPOEOz/8A3SecOeHf4DOE+788GtRcljNtVdLz0n2fOzH6Dzhzg//GD2H3POxH6PnhHs+9rqUHFZz+dXy0bHW2Xeh9UluqXX2XWh9kltqnX0XWp/kllpnn0fDMJ1FAAAgFSUHAABIRckBAABSUXIAAIBUlBwAACAVJQcAAEhFyQEAAFJRcgAAgFSUHAAAIBUlBwAASEXJAQAAUlFyAACAVJQcAAAgFSUHAABIRckBAABSUXIAAIBUlJyEPiC21pcIrNP6igE4q5ZTd8PXBvrUdtaDtYxYgNMxcQNHs2TkRAxXgDMydwMNWDhyFsYqwBmZu4EGLBw5BQMV4KRM30Ablo/EZ5QCnJTpG2jD8pHgDFGA8zKDA81YRBKZ8QlwXmZwoBmLSMIyOAFOLeAk/u/r6WeEPr9/Xrf6+f78+Pj4+Pq39AnHt/x9msmXWbyTIx6f8PZK0y9zfc5VuwGnZylJTEYmwKmFmsTnmsPz2r9GydnacN7s6nzJmX4tJYceWUoSkGEJcHZx5vF7bXha5U+Ug+KSM2g4S55k0XPOGbzeRJFRcuiUBSXRGJMAZxdkHn/zWa7bw4NSUVhy/t6J2dBwJp5z3rDkjB+okkOnLCgJxYAESCDGVP5bOWY6w29F+GsAJSWntOGMPedbtx3+nuxzSg79sqwkDqMRIIEQU/mW1f3mkjP1sbh1tpecf5NvWyk59MuykiAMRYAcIszmK/rKpj8aFJL7Z8ZKq0RJyZn6dJ6SQ9csLonAOATIIcJsvmlxv6HkPHwrZvMH1YbPOevpFR53eKzmKDl0zeKS5gxCgDQiTOjHlJx79/j6qlBzSkvOWM1RcuidJSZtGYEAaUSY0A8sOdfNb/9R0CfKPq728D/33VBy6J0lJg0ZfgCZRJjTj/lOzuj91TY3ihol57nmKDlgoUkzxh5AJiHm9EWr+6fbTJf+GOj9CzoH/07OxG58fv8oOWChSSMGHkAyMab197+T87JJackprDm1Ss6w5nwrOXCx3KQFow4gmSDT+tRPx9z8VpzBw+Ulp+iG0vVKzmA3Sr8oBClYbnIwQw4gnzAz+2Cl/9gD/h54WP7XKDmX7V/OqVlyHmuOkgMWnRzKeAPIJ9LM/viOxrOp79S833y+kNzvvbbqU2sLbiH99JTzrWyiykGfLDo5jMEGkFK8yf21Powu+6uVnG01p3bJef+JPeiLpSfHMNIAUjK5AxFZenIAwwwgK/M7EJQFKHszxgCyMr8DQVmAsisDDCAxU/zAsi/arPvyDlDAMpT9GF0AiZniB5QcCMYylJ0YWgC5meWB0CxG2YNxBZCbWR4IzWKU6gwqgPRM9EB0lqTUZUQBpGeiB6KzJKUiwwmgB+Z64AQsTKnFWALogbkeOAELU6owkAA6YboHzmHhHd5hXuuBDMARTPcAAEAqSg4AAJCKkgMAAKSi5AAAAKkoOQAAQCpKDgAAkIqSAwAApKLkAAAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkpPQB1Bb68satmh93QC9azkBNnxtgLNoO1PDBgYt0DMzIMB71oucixELdM4kCLCIVSMnYrgCnTMJAixi1chZGKsA5kGApawdOQUDFcA8CLCUtSPxGaUAFyUHYBUrSIIzRAEuSg7AKlaQRGZ8AlyZDQHWsY4kLIMT4GrDbPjv6+m3TD+/f163+vn+/Pj4+Pj6t/QJx7f8fZrJl5n9i3l/L/hyRCMGr/63+czR3Xfj/ofzr7Lw6ID2rCOJycgEuFs1Ic4t058X6TVKzvqGczm25Ewf3t9eLCw5808HxPJhNUk8hiXA3fIJ8b5Gf+obI8v5wX9vLzmDslK49p97p2jZBmObz+7aWD2bfZXbc3pDB07BapJojEmAoYVz4m3RPrEGvz08WMEXlpxFHwlbaJ+S8/n19Tn1Vz/fn/cNlpWce2BaDpyENSWhGJAAQ8vmxN/K8f4rKH9L9JKSU7PhjD3/6g3GNv/8/vc90XKuHef38aUlZ01iQHvWlMRhNAI8WTQt3lb1a95j2Fxypj4Wt91eJefnZ7zl/Hac34eVHEjLypIgDEWAJ0umxU2r720l5/WeZBXsVnIuoy3n1nEu60qOj6vB6VhZEoFxCPBqycy45Y2cLSXn4b5oFd/QWFhyZg3/epDHSMu5d5w1Jed+6N7HgXOxvqQ5gxDgVZySc68TX1+V1/s7lpzXlvPXccZLzhzv4sDpWF/SlhEIMCpYybluXvl+yvt9XO3y0nIGHWddyfEWDpyVVSYNGX4Ao+J8J2f0/mpVas6uJeex5Yz8Y/GNB4BzssqkFWMPYEq9u6s93Wa69MdAK35LZd+S83rfhMcIlBzIz1qTJgw8gCm1fifnZZPSklOx5uxccq7/HrnZmpIDvbDW5HhGHcCMhVPkrXBMvZvzW3EGD5eXnGo3lN675NxazvOPgyo50BErTg5myAHMWDxFDu7v/LhO/3vgoYrUKDmXOl/O2b3kvN464XK5KDnQFStOjmS8AcxbM0s+/I7Ni6nv1LzffH71fy8Qm+tBjVtID59g5CtKozup5EBfrDs5jMEGMG/9LPnaCEbfZalWcsprzgElZ/RbS0oO9MW6k2MYaQBvmSgBqrH65ACGGcBbJkqAaqw+2ZsxBrCEuRKgJmtQdmWAASxxqrly2XdnfPEFaMgalP0YXQALnWq6VHKAM7ASZSeGFsBCpkuAyqxE2YNxBbCcGROgPutRqjOoAJYzYwLUZz1KXUYUwComTYBdWJVSkeEEsIpJE2AXVqXUYiwBrGXeBNjLwhtCwlutxzLAyZg3AQCAVJQcAAAgFSUHAABIRckBAABSUXIAAIBUlBwAACAVJQcAAEhFyQEAAFJRcgAAgFSUHAAAIBUlBwAASEXJAQAAUlFyAACAVJQcAAAgFSUHAABIRckBAABSUXKAaj5Sa50uUKT1FHJirU9dBq3PYTMtM2/42kAmbeeyveU+OuiBq3gbuVUhxuNJHKgj/Qye/gAhMddvCekVEmATQgcq6GEG7+EYISvXbwnpFRJgE0IHKuhkBu/kMCEZV245GW4mulbkDpTqZwbv50ghE1duORluJrpW5A6U6moG7+pgIQHXbC2S3EBoDYkeKNLbDN7b8cLZuWZrkeQGQmtI9ECRDmfwDg8ZTsrVWpc8VxFXW32k/+/r9ceJvv6t+YPP75/RDX++P98+2d8Tjm/2+xxzLwNB9TmD93nUcEau1rrkuYq42sqe/li9me0uc38wUkGKS46Gw6l1O4N3e+BwIq7TPUh1IUE1l/kEDPrDS7v4e2xYLe4N56lvjG89eGRjyZnbQwiv5xm852OHs3Cd7kGqCwmqubwn4FYgZt4f+e00v/3izR/cHn5sIyUl5+9NIw2HU+p8Bu/88CE4V+h+ZPuWiCLIeg7GK8nEVp/fP8+N593WT/+3vuRoOJycGVwCEJkrdD+yfUtEESQ9B0u7x59r6Vj9tZhtJWfqY3FwHmbwixAgKtfm3iQ8QzhB5DwN6zvO+r9Y93eDknP/Io6Gw2mZwa/kADG5Nvcm4RnCCSLnaVj/tszGN3JWl5zBrQZ8UI3zMoPfiQKicVUeQ86jxBJHzjMxXVkeSsbd5/f3ISXn3m6+vtQcTssMPiQNiMZVeQw5jxJLHDnPROiSc9329h8+s8bpmMGfCATicD0eSdpPBBJKzpOx/Bs2tzr075Dv5IzeX03N4UzM4K9kAnG4Ho8k7ScCCSXpyVjccu7v+Sz6Us7rbaaLfgz0/raST61xGmbwUWKBCFyJx5P5nSiiyXo+xn7TZsxft3n/OzljmxSVHDWHkzGDT5EMROBKPJ7M70QRTd7zcesPsz3nt7Z8fv+8/4Phts+vsrXkuKE0p2IGnyEcaMs12IrkL0IIKfMpGd5k4LlePNyA4NYvBv/5uP3fA89VpLjkXHw5h5Mwg8+TD7TlGmxF8hchhJT9lIzfTW1g6msySzZe8Py3v5grOYN7r/nUGnGZwd8SEbTi6mur8/w7P/ywOjkrjz9T8/Z9k9fNp7auU3LUHKIzgy8hJWjF1ddW5/l3fvhhOSvAe2bwhQQFx3PdRdDtWej2wONzYoA3zODLyQqO57qLoNuz0O2Bx+fEAG+YwVcRFxzJFRdHh+eiw0M+EecGmGMGX0ticCRXXBwdnosOD/lEnBtgjhl8A6HBMVxr0XR1Rro62DNyeoBJZvBt5AbHcK1F09UZ6epgz8jpASaZwTcTHezNVRZTJ+elk8M8NWcIGGcGLyE92JurLKZOzksnh3lqzhAwzgxeSICwH9dXZOnPTvoDzMFJAkaYwcvJEPbj+oos/dlJf4A5OEnACDN4FWKEPbiy4kt8jhIfWjLOU0IfUKz1KE6i9WmEtFpf3LzReoDsq3W6LOI8AQAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkgMAAKSi5AAAAKkoOQAAQCpKDgAAkIqSAwAApKLkAAAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAqSg4AAJCKkgMAAKSi5AAAAKkoOQAAQCpKDgAAkIqSAwAApKLkAAAAqSg5AABAKkoOAACQipIDAACkouQAAACpKDkAAEAq/wG/Zi/0c73e4QAAAABJRU5ErkJggg==" alt="" width="975" height="229" />

即相当于clk_en等下一个时钟才作用,没有产生毛刺。

FPGA学习笔记之格雷码、边沿检测、门控时钟的更多相关文章

  1. JVM学习笔记:字节码执行引擎

    JVM学习笔记:字节码执行引擎 移步大神贴:http://rednaxelafx.iteye.com/blog/492667  

  2. Hadoop学习笔记(9) ——源码初窥

    Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续 ...

  3. [转]OpenTK学习笔记(1)-源码、官网地址

    OpenTK源码下载地址:https://github.com/opentk/opentk OpenTK使用Nuget安装命令:OpenTK:Install-Package OpenTK -Versi ...

  4. Flutter学习笔记(38)--自定义控件之组合控件

    如需转载,请注明出处:Flutter学习笔记(38)--自定义控件之组合控件 在开始之前想先写点其他的,emm...就是今天在学习到自定义控件的时候,由于自定义控件这块一直是我的短板,无论是Andro ...

  5. 机器学习框架ML.NET学习笔记【8】目标检测(采用YOLO2模型)

    一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片, ...

  6. Nginx学习笔记4 源码分析

    Nginx学习笔记(四) 源码分析 源码分析 在茫茫的源码中,看到了几个好像挺熟悉的名字(socket/UDP/shmem).那就来看看这个文件吧!从简单的开始~~~ src/os/unix/Ngx_ ...

  7. Linux简易APR内存池学习笔记(带源码和实例)

    先给个内存池的实现代码,里面带有个应用小例子和画的流程图,方便了解运行原理,代码 GCC 编译可用.可以自己上网下APR源码,参考代码下载链接: http://pan.baidu.com/s/1hq6 ...

  8. FPGA编程技巧系列之按键边沿检测

    抖动的产生: 通常的按键所用开关为机械弹性开关,当机械触点断开.闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开.因而在闭合及断开的瞬间均伴随有一连串的 ...

  9. FPGA学习笔记(八)—— 状态机设计实例之独立按键消抖

    ###### [该随笔中部分内容转载自小梅哥] ######### 独立按键消抖自古以来在单片机和FPGA中都是个不可避免的问题,首先,解释一下什么叫做按键抖动,如图,按键在按下和松开的那个瞬间存在大 ...

随机推荐

  1. HDU5331 : Simple Problem

    因为是二分图,所以最大独立集$=$总点数$-$最大匹配. 因为是树,所以具有贪心性质,设$f_i$表示$i$是否与其孩子匹配,$a_i$表示$i$的孩子里$f$为$0$的个数,则$f_i=[a_i&g ...

  2. webpack: require.ensure与require AMD的区别

    http://blog.csdn.net/zhbhun/article/details/46826129

  3. STL 的运用 istringstream的运用

    单词数 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. POJ 1106 Transmitters(计算几何)

    题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...

  5. android实现两个页面跳转

    1.实现两个界面之间转换 在安卓当中,最常见的就是按下按钮之后跳转到第二个界面. 关键代码很简单: 这是以bn2按钮为例,当前Activity为MainActivity,跳转到Registration ...

  6. 访问google,youtube

    一.找到host文件 windows : C:\windows\system32\drivers\etc mac os: /private/etc linux : /etc 二.修改host文件 ht ...

  7. iOS定时器

    主要使用的是NSTimer的scheduledTimerWithTimeInterval方法来每1秒执行一次timeFireMethod函数,timeFireMethod进行倒计时的一些操作,完成时把 ...

  8. 纪念逝去的岁月——C/C++快速排序

    快速排序 代码 #include <stdio.h> void printList(int iList[], int iLen) { ; ; i < iLen; i++) { pri ...

  9. css设置移动端checkbox和radio样式

    复选框Checkbox是Web应用常用控件,随处可见,原生的复选框控件一般就像下面这样: 这取决于操作系统和浏览器,有些时候,这种样子并不能满足设计要求,这时需要更为精致的复选框样式.以往只有少数浏览 ...

  10. [CareerCup] 18.4 Count Number of Two 统计数字2的个数

    18.4 Write a method to count the number of 2s between 0 and n. 这道题给了我们一个整数n,让我们求[0,n]区间内所有2出现的个数,比如如 ...