WGS84坐标和UTM坐标的转换
如题。做了一个Demo,主要是把最后面的参考资料1里面的脚本改成了C语言版本的.
代码:
#ifndef __COORCONV_H__
#define __COORCONV_H__ #include <cmath> double pi = 3.14159265358979; /* Ellipsoid model constants (actual values here are for WGS84) */
double sm_a = 6378137.0;
double sm_b = 6356752.314;
double sm_EccSquared = 6.69437999013e-03;
double UTMScaleFactor = 0.9996; typedef struct tagUTMCorr
{
double x;
double y;
}UTMCoor; typedef struct tagWGS84Corr
{
double lat;
double log;
}WGS84Corr;
/*
* DegToRad
*
* Converts degrees to radians.
*
*/
inline double DegToRad (double deg)
{
return (deg / 180.0 * pi);
} /*
* RadToDeg
*
* Converts radians to degrees.
*
*/
inline double RadToDeg (double rad)
{
return (rad / pi * 180.0);
} /*
* ArcLengthOfMeridian
*
* Computes the ellipsoidal distance from the equator to a point at a
* given latitude.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
*
* Globals:
* sm_a - Ellipsoid model major axis.
* sm_b - Ellipsoid model minor axis.
*
* Returns:
* The ellipsoidal distance of the point from the equator, in meters.
*
*/
double ArcLengthOfMeridian (double phi)
{
double alpha, beta, gamma, delta, epsilon, n;
double result; /* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha */
alpha = ((sm_a + sm_b) / 2.0) * (1.0 + (pow(n, 2.0) / 4.0) + (pow(n, 4.0) / 64.0)); /* Precalculate beta */
beta = (-3.0 * n / 2.0) + (9.0 * pow(n, 3.0) / 16.0) + (-3.0 * pow(n, 5.0) / 32.0); /* Precalculate gamma */
gamma = (15.0 * pow(n, 2.0) / 16.0) + (-15.0 * pow(n, 4.0) / 32.0); /* Precalculate delta */
delta = (-35.0 * pow(n, 3.0) / 48.0) + (105.0 * pow(n, 5.0) / 256.0); /* Precalculate epsilon */
epsilon = (315.0 * pow(n, 4.0) / 512.0); /* Now calculate the sum of the series and return */
result = alpha * (phi + (beta * sin(2.0 * phi)) + (gamma * sin(4.0 * phi)) + (delta * sin(6.0 * phi)) + (epsilon * sin(8.0 * phi))); return result;
} /*
* UTMCentralMeridian
*
* Determines the central meridian for the given UTM zone.
*
* Inputs:
* zone - An integer value designating the UTM zone, range [1,60].
*
* Returns:
* The central meridian for the given UTM zone, in radians, or zero
* if the UTM zone parameter is outside the range [1,60].
* Range of the central meridian is the radian equivalent of [-177,+177].
*
*/
inline double UTMCentralMeridian (int zone)
{
return DegToRad(-183.0 + (zone * 6.0));
} /*
* FootpointLatitude
*
* Computes the footpoint latitude for use in converting transverse
* Mercator coordinates to ellipsoidal coordinates.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* y - The UTM northing coordinate, in meters.
*
* Returns:
* The footpoint latitude, in radians.
*
*/
double FootpointLatitude (double y)
{
double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
double result; /* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0) * ( + (pow(n, 2.0) / ) + (pow(n, 4.0) / )); /* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_; /* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * pow(n, 3.0) / 32.0) + (269.0 * pow(n, 5.0) / 512.0); /* Precalculate gamma_ (Eq. 10.22) */
gamma_ = (21.0 * pow(n, 2.0) / 16.0) + (-55.0 * pow(n, 4.0) / 32.0); /* Precalculate delta_ (Eq. 10.22) */
delta_ = (151.0 * pow (n, 3.0) / 96.0) + (-417.0 * pow (n, 5.0) / 128.0); /* Precalculate epsilon_ (Eq. 10.22) */
epsilon_ = (1097.0 * pow(n, 4.0) / 512.0); /* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * sin(2.0 * y_)) + (gamma_ * sin(4.0 * y_)) + (delta_ * sin(6.0 * y_)) + (epsilon_ * sin(8.0 * y_)); return result;
} /*
* MapLatLonToXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Transverse Mercator projection. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
* lambda - Longitude of the point, in radians.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* xy - A 2-element array containing the x and y coordinates
* of the computed point.
*
* Returns:
* The function does not return a value.
*
*/
void MapLatLonToXY (double phi, double lambda, double lambda0, UTMCoor &xy)
{
double N, nu2, ep2, t, t2, l;
double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
double tmp; /* Precalculate ep2 */
ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0)) / pow(sm_b, 2.0); /* Precalculate nu2 */
nu2 = ep2 * pow(cos(phi), 2.0); /* Precalculate N */
N = pow(sm_a, 2.0) / (sm_b * sqrt( + nu2)); /* Precalculate t */
t = tan (phi);
t2 = t * t;
tmp = (t2 * t2 * t2) - pow (t, 6.0); /* Precalculate l */
l = lambda - lambda0; /* Precalculate coefficients for l**n in the equations below
so a normal human being can read the expressions for easting
and northing
-- l**1 and l**2 have coefficients of 1.0 */
l3coef = 1.0 - t2 + nu2; l4coef = 5.0 - t2 + * nu2 + 4.0 * (nu2 * nu2); l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2; l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 - 330.0 * t2 * nu2; l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2); /* Calculate easting (x) */
xy.x = N * cos (phi) * l + (N / 6.0 * pow(cos(phi), 3.0) * l3coef * pow(l, 3.0))
+ (N / 120.0 * pow(cos(phi), 5.0) * l5coef * pow(l, 5.0))
+ (N / 5040.0 * pow(cos (phi), 7.0) * l7coef * pow(l, 7.0)); /* Calculate northing (y) */
xy.y = ArcLengthOfMeridian (phi)
+ (t / 2.0 * N * pow(cos(phi), 2.0) * pow(l, 2.0))
+ (t / 24.0 * N * pow(cos(phi), 4.0) * l4coef * pow(l, 4.0))
+ (t / 720.0 * N * pow(cos(phi), 6.0) * l6coef * pow(l, 6.0))
+ (t / 40320.0 * N * pow(cos(phi), 8.0) * l8coef * pow(l, 8.0));
} /*
* MapXYToLatLon
*
* Converts x and y coordinates in the Transverse Mercator projection to
* a latitude/longitude pair. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* philambda - A 2-element containing the latitude and longitude
* in radians.
*
* Returns:
* The function does not return a value.
*
* Remarks:
* The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
* N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
* to the footpoint latitude phif.
*
* x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
* to optimize computations.
*
*/
void MapXYToLatLon (double x, double y, double lambda0, WGS84Corr &philambda)
{
double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly; /* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude (y); /* Precalculate ep2 */
ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0)) / pow(sm_b, 2.0); /* Precalculate cos (phif) */
cf = cos (phif); /* Precalculate nuf2 */
nuf2 = ep2 * pow (cf, 2.0); /* Precalculate Nf and initialize Nfpow */
Nf = pow(sm_a, 2.0) / (sm_b * sqrt( + nuf2));
Nfpow = Nf; /* Precalculate tf */
tf = tan (phif);
tf2 = tf * tf;
tf4 = tf2 * tf2; /* Precalculate fractional coefficients for x**n in the equations
below to simplify the expressions for latitude and longitude. */
x1frac = 1.0 / (Nfpow * cf); Nfpow *= Nf; /* now equals Nf**2) */
x2frac = tf / (2.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**3) */
x3frac = 1.0 / (6.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**4) */
x4frac = tf / (24.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**5) */
x5frac = 1.0 / (120.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**6) */
x6frac = tf / (720.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**7) */
x7frac = 1.0 / (5040.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**8) */
x8frac = tf / (40320.0 * Nfpow); /* Precalculate polynomial coefficients for x**n.
-- x**1 does not have a polynomial coefficient. */
x2poly = -1.0 - nuf2; x3poly = -1.0 - * tf2 - nuf2; x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 - 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2); x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2; x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2 + 162.0 * tf2 * nuf2; x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2); x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + * (tf4 * tf2); /* Calculate latitude */
philambda.lat = phif + x2frac * x2poly * (x * x) + x4frac * x4poly * pow(x, 4.0) + x6frac * x6poly * pow(x, 6.0) + x8frac * x8poly * pow(x, 8.0); /* Calculate longitude */
philambda.log = lambda0 + x1frac * x + x3frac * x3poly * pow(x, 3.0) + x5frac * x5poly * pow(x, 5.0) + x7frac * x7poly * pow(x, 7.0);
} /*
* LatLonToUTMXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Universal Transverse Mercator projection.
*
* Inputs:
* lat - Latitude of the point, in radians.
* lon - Longitude of the point, in radians.
* zone - UTM zone to be used for calculating values for x and y.
* If zone is less than 1 or greater than 60, the routine
* will determine the appropriate zone from the value of lon.
*
* Outputs:
* xy - A 2-element array where the UTM x and y values will be stored.
*
* Returns:
* void
*
*/
void LatLonToUTMXY (double lat, double lon, int zone, UTMCoor &xy)
{
MapLatLonToXY (lat, lon, UTMCentralMeridian(zone), xy); /* Adjust easting and northing for UTM system. */
xy.x = xy.x * UTMScaleFactor + 500000.0;
xy.y = xy.y * UTMScaleFactor;
if (xy.y < 0.0)
xy.y += 10000000.0;
} /*
* UTMXYToLatLon
*
* Converts x and y coordinates in the Universal Transverse Mercator
* projection to a latitude/longitude pair.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* zone - The UTM zone in which the point lies.
* southhemi - True if the point is in the southern hemisphere;
* false otherwise.
*
* Outputs:
* latlon - A 2-element array containing the latitude and
* longitude of the point, in radians.
*
* Returns:
* The function does not return a value.
*
*/
void UTMXYToLatLon (double x, double y, int zone, bool southhemi, WGS84Corr &latlon)
{
double cmeridian; x -= 500000.0;
x /= UTMScaleFactor; /* If in southern hemisphere, adjust y accordingly. */
if (southhemi)
y -= 10000000.0; y /= UTMScaleFactor; cmeridian = UTMCentralMeridian (zone);
MapXYToLatLon (x, y, cmeridian, latlon);
} #endif //__COORCONV_H__
然后用MFC写了一个类似的对话框程序:
全部的源代码:
http://files.cnblogs.com/wb-DarkHorse/CoordinateConvert.rar
RERERENCE:
1 http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html 网页版demo
2 http://www.mogoo.org/fang/?p=65 一位博客里面的,用Java写的
3 http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system wiki的介绍,公式都写的很清楚,不多说
4 http://my.oschina.net/lidayong/blog/59869 一位博客里的,用c#写的
5 http://www.zhdzch.com/xxyd/chzs/200904/522.html 比较清楚的介绍,用VB写的
下面是国外的几篇资料:
http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html 根据经纬度求距离
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf 对应上面链接的文章
http://trac.osgeo.org/proj/ 一个开源的地图投影库
WGS84坐标和UTM坐标的转换的更多相关文章
- 百度坐标(BD09)、国测局坐标(火星坐标,GCJ02)、和WGS84坐标系之间的转换(JS版代码)
/** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ //定义一些常量 ...
- 转载: utm坐标和经纬度相互转换
原文地址: https://blog.csdn.net/hanshuobest/article/details/77752279 //经纬度转utm坐标 int convert_lonlat_utm( ...
- WGS84、Web墨卡托、火星坐标、百度坐标互转
转自:1.http://blog.csdn.net/wildboy2001/article/details/12031351 2.http://kongxz.com/2013/10/wgs-cgj/ ...
- WGS84、GCJ-02(火星坐标)、百度坐标,Web墨卡托坐标
GCJ-02坐标系统(火星坐标)简介:http://blog.csdn.net/giswens/article/details/8775121(存档:http://mapbd.com/cms/2012 ...
- 百度坐标(BD-09)、国测局坐标(火星坐标,GCJ-02)和WGS-84坐标互转
// 坐标转换 var coordTransform = (function () { // 一些常量 var PI = 3.1415926535897932384626; var X_PI = 3. ...
- 火星坐标、百度坐标、WGS84坐标转换代码(JS、python版)
火星坐标.百度坐标.WGS84坐标转换代码(JS.python版) 一.JS版本源码 github:https://github.com/wandergis/coordTransform /** * ...
- BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换
BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换 http://www.cnphp6.com/archives/24822 by root ⋅ Leave a ...
- 火星坐标、百度坐标、WGS84坐标转换代码(JS)
JS版本源码 /** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ / ...
- wgs84 转百度经纬度坐标
/** * wgs84 转百度地图坐标 * @param $lng * @param $lat * @return array */ function toBaiduLocation($lng,$la ...
随机推荐
- JS:操作样式表2 :用JS实现添加和删除一个类名的功能(addClass()和removeClass())
var box = document.getElementById("box"); box.id = "pox"; 将id = “box”,改为id = “po ...
- Linux 下安装mysql 链接库
1.mysql 客户端 开发 链接库 1.1)CentOS yum install mysql-devel
- [LintCode] Flatten Binary Tree to Linked List 将二叉树展开成链表
Flatten a binary tree to a fake "linked list" in pre-order traversal. Here we use the righ ...
- Linux下安装配置Apache+PHP+MariaDB
一.安装apache 1.下载并安装apache yum install httpd 2.启动apache systemctl start httpd.service 3.停止apache syste ...
- spring security 控制用户信息用户加密 缓存用户信息
1. MD5加密 任何一个正式的企业应用中,都不会在数据库中使用明文来保存密码的,我们在之前的章节中都是为了方便起见没有对数据库中的用户密码进行加密,这在实际应用中是极为幼稚的做法.可以想象一下,只要 ...
- 2016HUAS暑假集训训练2 J - 今年暑假不AC
题目链接:http://acm.hust.edu.cn/vjudge/contest/121192#problem/J 此题要求是计算能够看到最多的节目 ,贪心算法即可,首先对结束时间排序,然后在把开 ...
- mapminmax的用法详解 _MATLAB
============外一篇 有关mapminmax的用法详解 by faruto==================================转自:http://www.ilovematla ...
- scrum站立会议学习
项目:连连看游戏 小组名称:临时小组 组长:张政 小组成员: 李权 武志远 张政 张金生 MASTER:张政 会议内容: 一.已完成项: 1.根据先前的安排和计划完成了项目主要环境的搭建,配置好了基本 ...
- dom4j解析xml文档(增删改查)
package itcast.dom4j; import java.io.File; import java.io.FileOutputStream; import java.io.FileWrite ...
- pomotime_v1.7.2 番茄软件完全教程
资源下载:http://download.csdn.net/detail/xz_legendx/8546211 番茄规则和技巧 一个番茄时间共30分钟,包括25分钟的工作时间和5分钟的休息时间. ...