位运算应用口诀

清零取位要用与,某位置一可用或

若要取反和交换,轻轻松松用异或

移位运算

要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。

2 "<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,其值相当于乘2。

3 ">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。

4 ">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。

位运算符的应用 (源操作数s 掩码mask)

(1) 按位与-- &

1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)

2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)

(2) 按位或-- |

常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)

(3) 位异或-- ^

1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)

2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)

目 标           操 作              操作后状态

a=a1^b1         a=a^b              a=a1^b1,b=b1

b=a1^b1^b1      b=a^b              a=a1^b1,b=a1

a=b1^a1^a1      a=a^b              a=b1,b=a1

二进制补码运算公式:

-x = ~x + 1 = ~(x-1)

~x = -x-1

-(~x) = x+1

~(-x) = x-1

x+y = x - ~y - 1 = (x|y)+(x&y)

x-y = x + ~y + 1 = (x|~y)-(~x&y)

x^y = (x|y)-(x&y)

x|y = (x&~y)+y

x&y = (~x|y)-~x

x==y:    ~(x-y|y-x)

x!=y:    x-y|y-x

x< y:    (x-y)^((x^y)&((x-y)^x))

x<=y:    (x|~y)&((x^y)|~(y-x))

x< y:    (~x&y)|((~x|y)&(x-y))//无符号x,y比较

x<=y:    (~x|y)&((x^y)|~(y-x))//无符号x,y比较

应用举例

(1) 判断int型变量a是奇数还是偶数

a&1   = 0 偶数

a&1 =   1 奇数

(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1

(3) 将int型变量a的第k位清0,即a=a&~(1<<k)

(4) 将int型变量a的第k位置1, 即a=a|(1<<k)

(5) int型变量循环左移k次,即a=a<<k|a>>16-k   (设sizeof(int)=16)

(6) int型变量a循环右移k次,即a=a>>k|a<<16-k   (设sizeof(int)=16)

(7)整数的平均值

对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:

int average(int x, int y)   //返回X,Y 的平均值

{

return (x&y)+((x^y)>>1);

}

(8)判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂

boolean power2(int x)

{

return ((x&(x-1))==0)&&(x!=0);

}

(9)不用temp交换两个整数

void swap(int x , int y)

{

x ^= y;

y ^= x;

x ^= y;

}

(10)计算绝对值

int abs( int x )

{

int y ;

y = x >> 31 ;

return (x^y)-y ;        //or: (x+y)^y

}

(11)取模运算转化成位运算 (在不产生溢出的情况下)

a % (2^n) 等价于 a & (2^n - 1)

(12)乘法运算转化成位运算 (在不产生溢出的情况下)

a * (2^n) 等价于 a<< n

(13)除法运算转化成位运算 (在不产生溢出的情况下)

a / (2^n) 等价于 a>> n

例: 12/8 == 12>>3

(14) a % 2 等价于 a & 1

(15) if (x == a) x= b;

            else x= a;

        等价于 x= a ^ b ^ x;

(16) x 的 相反数 表示为 (~x+1)

原文http://www.phpip.com/program/php/A62009905P/21834.html

【转】PHP 位运算应用口诀的更多相关文章

  1. C语言基础知识--位运算

    1.原码,反码,补码: (1)在n位的机器数中,最高位为符号位,该位为零表示为正,为一表示为负:其余n-1位为数值位,各位的值可为零或一.当真值为正时,原码.反码.补码数值位 完全相同:当真值为负时, ...

  2. ACM位运算技巧

    ACM位运算技巧 位运算应用口位运算应用口诀位运算应用口诀 清零取反要用与,某位置一可用或 若要取反和交换,轻轻松松用异或 移位运算 要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形. ...

  3. 说说Java 位运算

    前言 我们都知道,在计算机世界里,再复杂,再美的程序,到最后都会变成0与1.也就是我们常说的:二进制.二进制相信大家都很熟悉.与现实世界不同的是,在现实世界里,我们通常都是用十进制来表示的,也就是遇十 ...

  4. C 运算优先级口诀

    运算优先级口诀: 括号成员第一;        //括号运算符[]() 成员运算符.  ->  全体单目第二;        //所有的单目运算符比如!.~.++. --. +(正). -(负) ...

  5. Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range

    在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...

  6. 简简单单学会C#位运算

    一.理解位运算 要学会位运算,首先要清楚什么是位运算?程序中的所有内容在计算机内存中都是以二进制的形式储存的(即:0或1),位运算就是直接对在内存中的二进制数的每位进行运算操作 二.理解数字进制 上面 ...

  7. SQL Server时间粒度系列----第8节位运算以及设置日历数据表节假日标志详解

    本文目录列表: 1.位运算 2.设置日历数据表节假日标志 3.总结语 4.参考清单列表   位运算   SQL Server支持的按位运算符有三个,分别为:按位与(&).按位或(|).按位异或 ...

  8. js中的位运算

    按位运算符是把操作数看作一系列单独的位,而不是一个数字值.所以在这之前,不得不提到什么是"位": 数值或字符在内存内都是被存储为0和 1的序列,每个0和1被称之为1个位,比如说10 ...

  9. Java中的位运算

    昨天去面试的时候做到了一道Java的位运算题目,发现有个运算符不懂:">>>",今天特地查了一下,并小结一下常见的位运算符号: ~  按位非(NOT)(一元运算) ...

随机推荐

  1. [Cocos2D-x For WP8]Box2D物理引擎

    物理引擎通过为刚性物体赋予真实的物理属性的方式来计算运动.旋转和碰撞反映.为每个游戏使用物理引擎并不是完全必要的—简单的“牛顿”物理(比如加速和减速)也可以在一定程度上通过编程或编写脚本来实现.然而, ...

  2. URAL 1427. SMS(DP+单调队列)

    题目链接 我用的比较传统的办法...单调队列优化了一下,写的有点搓,不管怎样过了...两个单调队列,存两个东西,预处理一个标记数组存... #include <iostream> #inc ...

  3. 【POJ3667】Hotel

    Description The cows are journeying north to Thunder Bay in Canada to gain cultural enrichment and e ...

  4. linq中join的用法

    join方法 public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>( this IEnu ...

  5. C#_数据转换 实用方法

    [String转Array]string str = "123asd456asd789";单字符: string[] a0 = str.Split('a');多字符: string ...

  6. nodejs入门(一)

    1.nodejs简介  Nodejs不是一个js应用.而是一个js运行平台. Node.js 使用事件驱动, 非阻塞I/O 模型而得以轻量和高效 2. 1).Nodejs内置了一个HTTP模块 var ...

  7. hdu 1312

    原题链接 题意:“@”为起点,“.”为路,求可以走的格子有多少个(包括起点) 水题 bfs搜一发 思路:只有可以走的节点才能进入队列,所以每次出队列时ans+1就可以了(没有退出条件,所有可进入的节点 ...

  8. [LintCode] Integer to Roman 整数转化成罗马数字

    Given an integer, convert it to a roman numeral. The number is guaranteed to be within the range fro ...

  9. win10添加打印机--无法访问指定设备,路径或文件。。

    win10添加打印机无法访问指定设备,路径或文件..后来发现很多按钮点击多说无法访问指定设备,路径或文件.. 解决添加打印机问题: 在搜索栏中搜索:print (从这里添加) 彻底解决: 添加环境变量 ...

  10. python 数据类型基础

    Python3 运算符 什么是运算符? 本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. 1.算术运 ...