NYOJ题目889求距离
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAJ2CAIAAADTwNOXAAAgAElEQVR4nO3dPVLrSteG4W8S5B4IsQcCpYSMEZAoMRH5TqjyCAigSJWfgKqdQOZsh+8Q9AVSS2t1r/6R3bbB3FftqnOwZf1b/WipLf1fDwAAcLD/O/cMAACAS0CkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRArg0r3e3q+u7lfX71/Tn7cfx5nUv6fr+9XV/erq+fU4EwDwjREpgEsnI8XX42Z1NbT6m6dPN8Tn+3p8cfr3/PryvPJfFO/2H3fRd6P/7l7OuR4AHBmRArh0XpWiH9LA9fMrkQJATUQK4HJM1x3K/22ePqdI8fzai/8fI0XZJYzhU3NqGcshZAjgNyFSAJfjbJHi6+XjKyh1rB//vb589MN4RNoAcKGIFMClCy58BFKRwvi3fvw3fG7smXH9/nQbv0RCpAB+CyIFcGn+PV3PrX4/RQqv3vDyPP/uY2FfijBSfL08B5c5Pu6u7le3VCmA34NIAVyW11sRC/Qrc5M/xYUhVaQihQwi44UVP1KU/CNSAJePSAFcnDlVXL9/BX/OeSLoJzEMOSYGIgWAZYgUwEV6efbzxHDN4noTtvHTrzOWRorA+MtSfugB/EpECuBi6VtHXD/fTb8H0XfP9CKF7B6R7Eux7NYU8SAC4DIQKYBLZFySuH53v/MU980UAxMpAByGSAFcGN3Xcg4KuiOFvDZRfOHDoy5zjFMZ6h/qVx7ZyyUALgORArgc+lZX7uqGd1+KuYChXzkoUvgDuzm5/SBSAL8GkQK4IO7Khby04S5PyN9czBc1Nk+f1oWPq/u72/JIkboCsn78IFIAvwORArgkn+/rMTr4zXzQon/cjdcs7EDgIoX5b4gsc5XC+jXp5u52s7ra3L0QKYBfgkgBXCj181H9Ew9NXy6ZihmpJ5H6kSI/Wn5ZClw+IgWAPWXuQqFKF9zqCrh8RAoAAFABkQIAAFRApAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFRApAABABUQKAABQAZEC31vXrpvtbvpzt23c3127tjTb3TDYpO3Un9Orcpxt1++2jZySnIN52F9gn+WNrTt/xImB2GTAz0ekwLnpaOA3EUY7lGiaXBszNjnuhelPMYrpb/em3z65YQ5on15vw2dlTU++8J7wufT1ozlWpAg2QuTtc26yz/e1/0SS4Jlqkaeyja+LMehHq8TGoxdRznfXjt8HPzzn0xtwJkQKnJtICLn8kG0q/EgxfiB1ymu95w7k+7dP0yO7dKSYHv554P8fU9HyRkpEfrNnrlx76LNvsq/HjX4o/CC22iOvvzyLLf5xN+8ABZtPRoqunRdYR42uJVTg2yJS4Nz8SLGNX9CYmoqwUZleF5FiOolNnPLOU196yrvbNplj+7+nax0pXp7luenX42Y8i136urf61u12Wh/D5QCvDVYJINfYlkYKuejh5akFpaXpM+fcZJ/v60XRoSzhvd5OhYolkWK3bfwQoS/6cF0H3xSRAue2T5XCa0uC13fbZmhn5wQSq6LvduN4jh8pRAPT9/3w9PDn1+WvK1N53M2S+sMtgTjDbzNnuHtECn/9BpFiGCDV++XMm+zrcRN5VuoBkeLlWZQ9yiNFUIZQkUL0JgK+HSIFzi3oS6Fak2ikKKhS5Kvo8cJ8s90e3JfiZJFCVSOCxmdhI7Q8UqgkM77g96k1Rqk/dt5N9np7v7reiG4Q03rWfSBifSN09Wh8qrvKKKnh55W6bpqwBuFHMUoU+LaIFDg3o0oh2qADqhRz4zL+qVqaoNmp3z3zm0SKuRUuChZLI8U4GVkBUKvSLA3IrgLzYOfbZK+3KgF4fzofd3YaiLz++b72O9Mkhx8KTk3jrxoufODHIFLg3OwLH6J1ODBS6K5/cxs7HpXts17Rmv38SKGXM5crlkSKYaS6y4b+cWfXrpumiXeRmebpvJvMX9Wf72ujq2b0+kid193W80OY90uQ4G/g2yBS4Nz27EthFcVVpBBvzFWPsYZs9QPwewbWjxTH655ZECnir4UjLP/FRzAu1yVieGMYV26zTh883ybz23jVDSI+WO71SLUjEyl6L6p5EYIyBb4vIgXOLehL4b+br1JMgirF9PJ0nb71TvGi7ZOYg1q/+DjGj0hL+lK0cg3mWqN9fvHhCYtIZZHinJtM/uDz39P1WLT4etzMW1BcyIi9/nortpH4FUlseH+leBWfKZh5v/8gUeCbIlLg3PapUuTGZbRPIq+og7Jun8byvNG2BZKRYrovhb5vknzLv4Sx9PV5kXNVChnaim5y+U0ixWk3mepBOVWDXp7t7VjrdW+lhKug2e687pn83gPfF5EC35I4iuqLymZTEQwdnrVaVwCC/oFqIOP2Dr/CAZFi3g5+r0nZl9NuGNlkwM9HpAAg7d93BMAvR6QAIBEpAOyJSAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIF8AuMN6MsuOcEj5AAsC8iBXBx5EMhvEfEh88N854gYVoeMf49XScfTQLgAhEpgMs1ViXs1DCHjDExeM/V2P82mgUPUAVwgYgUwMXp2unpae5BlmM4MJ4K7x4fnmA9+zLxVM+X59X1+5f76+txMz/YE8AlI1IAl2dMDmNasBODeKL8PlWKeKR4vb1XGeLlmcsfwO9ApAAu0Zwm2k6Eg0iVYooUB/eh6IkUwO9FpAAukqwiFEaKSogUwG9FpAAuk/hth9k9c4wWu22zbrv4zz6Wxw0iBfBbESmAizSEhCE3pKoU6vel6r2ujfW/zKB7JvBLESmACzTEg6ECkYwUOkfsts262e5SP+eQg8YG4UekwO9EpAAujosS6mek5jUNrzKx2zalVzxyqeP1lltdAb8NkQK4NEGHy2gPzOGNOXF4vyE97JcfAH4bIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKCCRKR4eV5d3a9uP9zfH3dX96ur51f//0dfjxsxcDiSjzs9PAAAuCC1IsUw8NX93Ys9ktfb+9XV/epq8/RZeQkAAMA3UBIpPt/XV0MgsP8NMeLrcbMKShcyl3w9bogUAABcKDtSDEUI9+/6/Wt+MXrho+//PV3f3738+3p8TuQPNzYAAHBJ6vWlsLhoEvaxAAAAF2VBpEgQVQ0xvLsUMvSl4JIHAAAXrChS/Hu6LriQYVU11tcbMTC/+AAA4FItiBRDmUFc8hi6bUYixevt/erq+dX7xQcdKQAAuEzZSHF1v7p+vlsaKab/D0od68d/x18qAABwYmakkL8a3aNKMX78+bXXOcON1r93BQAA+PHq96V4HrpqjtUIfTXk63FDlQIAgEt0lL4UH3fRPpsAAOAiHa17ZjASAABwwapFCnFxhAABAMCvE48Uw42q1o//SvpSvN5OmSM5MN0zAQC4THakmGLBcHMqWaUQ5irFv9fbDUEBAIBfLHHhAwAAoBSRAgAAVECkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAWxSLHbNmup3XovDK92fd/3fdeGb02a7S4cddvZHxpH6EaqP9u1agA9ymAyXRtOeg+J0SQX214oOcexhTGGLBrQnLnEKoivTjVxf5DdtgnH+j1WRfC+nq1muyucT7F83ji9ERgrx302NrPmDtW16TVQsq1y/K+0PxdqxvyB05uyfBPuP+fH/LKUjCnYl7wPJI83+dUZXcDEIom3rAl4syNmMLe77SE8XIu5LDqGmJ+ssd3DLRPdVv4bu22TPIa6gVKDhPNW0DQVrqFlO3y9b0dKKlK4qas5sfbG+CoK1/Z0cAxG5E/G+3p0wZcmcVCrlCcWjEgsTmYX68cdpin7vixblHm9TaMOjzbD+MqaKWPyuT3z9KvC31uGxNpst9MHIvMcX5TIMVrutcZXoSBSmG8UHOOr7dKxsSUnkJrBfHt50Iwf78sSG8U++1J6yvIj05DxnUWOrDxS+AkoOCFLfxcOMDSA29gBZY9jSF9xu1tvmgc/f6Z222bdtG22cU9GHzNRlKz+wlO+BZvy/JEi/GJFDhSlkUJFr1SVwo1wXvnj2jCaqNyJ59J1WHJCYYx3QTsqU1XRTrP4KKn2HW9Hmuau9My3a9dtl1rLxhY5z6qYltT9z7RjRvbQfOIxDvZ7RAo9eWM5zHy9eB/MCObdnoi5RqKHwaLzuAMc/8sSH1V6X1pyoDgwUhjbR34hm+0uW6WYRxn7Ku+74kR9Irr+Fx9Dam53ueXim8htDjcukRO6dr32Nk/WtO/4L5rbc+m+lCF3q4LZrGtBlUIfVeTRuOzCx/T54aPxKoU73I1/NNud10r5cTwyW8GbS2U/vWDrinF69eX0V9nfnWMTV4MsiBRGWWMvZ10VYhRDQzkfPd0XVu7MZfMZ7NVjw+K/5I3RayWGd9tutzMOHJFv0NFa6GmHjpy4La5SjMf7xEo9aFmq7yHlSvYlOd38gUJECnkcDN7v9aYoq1JkzCsySEgHMc7P41dAylXb7up71bbmMg/bw22Mrp0q4kEVXJzxple7G0C1RlOK98brzVL2NKegSBw/wf92VQqxL3qRovjCx5Q60xc+5tHGDlfiG5q07zpMHCaN1tprtebULhdfnNHN2TtZNXNzYb2/26noFFlXw/cjFin0aowVgCJzp84fzrgqoltqPIao3XOeD/u4rc7mwvLEsipFYuXpvd0+SMVO0ErrS9Gputn0D3n7XfiIF9ULqkDJWa33ZVk01dJ9KfMR89uhvyiVIoU4Brad99c0hzoQHR4pZDs+nPhZby05hkwLVXe7B4tqfH/mdeYOmGG70rZLv3fB96vxw1H4DclumJ8aKQz6oLpfpBANlxkFgq+dzQz91gT3rVKoUKrJUZqHB325xr3atWvZZuu9Opmy265gKYLmvbRKoRbZ2ooica/9efY+fvZV4e83wynHrhPrQ0UKY99LFIiXRwrrdFafLMZH5cYRbpP9E4UbZTNNXHx1E0seEX6y3+125ihLK7vTBc9jflmKV1RmX+r3O1AYXwn3aulqklFh3Wy37fSVns/9XD13aKObZjjliJ6JLVppwQlIuKfKg1DhMeRI271rxSpKNS67sCOpPVTpjhxWKXrvux42nZEvny7aiLUZDPM9I4WxWM12m4oU6VWrBlMngWZ8T6y1+eXjVSl2kZQajtKbT3H2r1vXsBGw07lRJgjPJr3PhLPVtU0jYnthpIi1VOob4JazM48g51wVsQDgnz2ftEoRrk43+nl06R22bOUsog/NheetkQP20vBROn/H2EPKLdiXFh4odFM8f31FyJvnwdosXo1R9DeYJ+lVKbp2CBPBmXqFCx/mHGfeih1DjrTdx7XRJi/P6Zao94+sub04tjL9sYjmzTzI9PZhI5w171Cm5kEcYopU3g1yVYrgjHPKnourFFOE8FamPjnyzuEiJ3PHrFKYYdJ4v+/VkcJ9beeqmfVFlmPJzpkcxljFqmmYh+3a4Re/7XY79zOqFSmmpV5bX/ZzrQqdVYOZUctxWJUicoyQayFzMqRPJIOVa71QspUW8E4Fp3OzfSKFey9yKKhUMajwZVk0rbJ9afGBoo33Mgi/o2YJyCv/W7tYZG6OECnSZ+t+cbrkGOKrcmRoO+/cQe/67sPy295avwPwR17SAJpVCvWOv2bME4b9IoWxomqnB1M0UgxXx+bdZjwcT7/u9xrufKTwX5hXpgrcbqjiKkVmgnsrP/kQiy928N22adp2/3bUaEv8r6l43/01Bbf5r8JIEVun3nm5O1r4x4Rzrop51ryN5B2Og0iRrFJYq0W96x0OpjK0FSmmYcfGJXaSEh589Zft4Jagc1Viaw3uFSnkV26323nN4WkiRckesmx6JftSZOjogSI+Rfl+tFUJVsL4qeTpqPgK+pFC23N9yR5d85yG+3DJMcRXabt7ZwnqSx9b6mykUFs03ALTlz16uDBftJdYTzreOMYjhVrUem2kKRYpxvmeph7s0vFTE280mUixcyfU/tG5oEqRzsmZr0tufy09+VgnUvLep+aqAiFf1GdP6vRlOLqEqy0VKdTXSxx+5qmPM+qqlWGhRFSDz7UqggnKM8u2bexveTpSWMdpr3+WignBxdP4Nph22+lioloMo/IhD4nmEUe2HinTCIw2bt9IkWzRiuesaK4TM5DfQ8rHWbovTUOXVSmKIoX1xYkdwoKxDpc8mybsErBnlSLbqLt9eY4IxlhLjyELp1663Y0wENkv529SLlLocLK8SiHmRYfTSFMViRT5od149aRz++MhIpGiG3qnxvblcOjS5jysO8smKTgcH69KkV2pkSNFqrVeMDeJb0vsi+k+5gWJqW2yqjx6ML1JunY9beS111TOx7fhlDa//513VeTPLNUo02JVCv+spmuDiXjVUHka08z37kzM9Tqxqu2zKtnkpfd8/XmrQBIdwZ6HoONXKRbsIcHnkmfHJfvSNHTRgSJHjSTR7pmTECcVU+HCO0nbI1IUb/ZEvWHBMcT+aHyChdvdW9Rx67r7QdunzOYGUwfesRONO/+IRYr0V1t80AxI1mrIbRRjcWP74VGKFXak6IKLEslvwT5VCiuRTafKsSqFWCXxXa1sPWWPdp1Z1taTTlwsyBwQYt+W3MlVn9r31MxmqxSJ8U+pT+3vyd3g3KsiemYZ7mPJkfofsXZFUWYIC4yRvGAvvNWuu7VZou3EdDKH7Mgen9xA+a1nT8ipc8w6wpcl+fUv3ZfMUS06UATvT+sus7rdVFx8sIKsfGO/SLEwElrbY8kxxBrfYdtdlHhia9YeWaJKkWqjvSWyqxTqM/O5W3DYiayc/JE2fspSWjk+ROzCx6WrdP50gVgzuHjs5CVYS1jut0YKAABQFZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAWZSDHcfUvcNLD41icH3pkrf/tAbsISu6PbxFiJ6fuw6fvDJu81K8ZRsp0T+076rnpVNnjZnlv22INjTX2fgSuOMPZ0kgOmungkBftasL9Gbg14tgNXbpbrjdK4P/ze36PyzVXyIIOjr3l5YEveqtrao9RRsdnu7KbGvvN9pQNEakn9Ox9X3hlTy1jnAGhHCuuOw+EeK++OHuyyh0cK7+viP/llvEmudR/T4LCz7Ett7GPLF+XAu6mrL6Ybn16M4JENwWL6n3F3w3NrM7xVt3Ubb7WSy45bwfouP7So29ZWOhj/oERRvQ0qHV/VSJE/IWi2u+AQEb9Zo7/XDbehbrbbaZON83z+A1cfPPTlaJFCP/U1mAc32fwC7bbN8LSfgjnNPs6i8pq3DzjyqDU9CtVMFPaJlpxgbBMtuin+IsMUvSUzv33xm73763oxY0MeM1IMxCb22+74vmx8eB9lkcJ6oso6PF1ZuNHzC5fjP1lg+Z1tx/0tfNSAeN+bxzBFL4sUeh37e3ZshcS3c8FX0vhkrUhROvXCA8ceu1DJ1I9TodlnzUcixR5HmSVnc+LbGZlp82sfPHcj2HfPduDqw0iRXvEZezZsCyLFtA1KDpWZ9Vd/zRfugP5qMh+UMweakkjhjVwfig88NCXSe+rbp9bQHjtq13pppbRCs0RRpBiWbJj8+IDfxBq1DpOLZ7Lwwoe3dbt2SH968+/zLT5orRY81qZkFOqZ72JPSzw3TBc3jJUYjRTB96Rr5XNK542YbwX1iWNqEcWQhSMtVj71osEXWjj1BZ+sOfVIJU2d8bfdfBpYopMPsi7ZksNzpczvnL8cw99i0HFBjOHOduDqw0hxpCqF/c7Cr5E+VOWPfIljzziCymu+PFKoiu2wm5g7hVpLmUgh3ps/Vnh8Sy2sdV1onEGzhLE26np7Zd8pVFjrVbymd6VFi2lHCm+BxkzXtdEn2JqjEHl1n0hRUqXQX4J5P5YN5V5x5uBIceCBZNzvdLPrrvVkRt218x5YWKUY96AgtuYXIl2lKI8U85fM+Mbuea5c3qgHfx3YDFSNU3vtwEsDjXfqtPhAEp2EnpnI7qLPbr1PRldR27pnxstT4/MeuLyPVYkU+oDknTN77UBY4lNfKf8oKs4TxJEgOsfTcSJ451hrvqSO14bP/Gwa/xiuIoVMHNbupU/kvKvQ4yrab9O6oO5Pue1UpHDLof/v8EghzhdcE2DvSuI8YuEZcqJKMe/IUxV+G7Zn1iZXNcnjRgr5dTNOvvc6KIT72OJxiLWy3wHFfcenZVE7cOJ7lj3V68MVtds2w6lEeEoYX67cl1zPujGPZqszf4tqRYrs1MNFrRgpypddz8Q0wD4HjiXLLj6TqMYupQ9OyWPBbtv4u110Lo0N1Wy7XaebwboHrq7wysOCQQ87tx036lwE2HY7I1LIE60gr8+nHf7YpzetmRwGi389jtBk7F2l6L3vcfKsVM2hvmhUdUvuts26befZm76mw9bUkSLccBUixbiRGquJjK3rkitis3ikmDa83DdjazRYPK/RX/wlyp+8BYUI4wR3v9OMg6sUk3mNLR3fvBUjxV03o/bh2Jt65Ls7Vz7GUrX/zcrNdTf0kbMHkw2bVRDINKsVI0V66gv2tSNM3VpM+xzzKMsuP1MlUpSGTnkYazt9SmRt7GC8uhHSqdT7zp3ywDVN0aov79sKKLttM1wTDXZML0qKxl0HjbCJCF+xDoJi/4w2PbXXfHmksCajTzjdJnHH02FWu0SkCJbvwM3XtW03jn8u+OjCgWy8/ChYJVL4kVFlGL2z7nUIjEWK3bZp2rZptju3aPFCgbURzHLcAt4YMxMXG0YOvixdqbHXiRRiDhfOiJh1v1CnBlLzac64bivcISVouozNlPkGGUFAVQgXN6vJRHTESBGoW6UoWna7JZ7PXY40dfWZelUKOQE9sS7owh7swW3XeSF1OuXdqcGC6Yy1sbMeuHr9NfST62HrdTrKuypg+P2fl3i3bVx72bWZfankSCmHie1B9df8vFmtL4js2BBWKXr5jhEpVNXHSiT5fLxPO9G1c6lnnILbc8WMzbFQHSyqRQodHvwzcNVk1ahSTK2YnIIYqf52TMPZ5ap9vpn+6krtnFY5rnMly0MPCVXscTBRK7xrw+sSvfG9zlUy3AcKI0U4E+qY7hdO/djknTMF30OvWW0T++2BVYr01KdJ+Ie7A84pFy57Z3xy/vugSFGy7LuplG7Mwh75Ss6z91NHPbYwYFhRyA0aHvWDVujsB65orPe/HcvIUOV9o8WIXSBbG0svGvzI+NOz5w9h7UNHWPOigbVLV9lI0fsvWpEiUqWwCwXZCwUZwXdAlSCCg7LewIdHiqm5DD6tNkbQwJaO344UXSs3o8h5Vjgbzync4Ws85SqYocSc+jtFMlL0XSsvDsVeKnZwpAhLLIuPJ3rdeHuWMUTiJfVVM89qwj/Ea0HTFznlCU6aUg2EnpvssfvASJGe+rRI7pL0vP32PrFcuOzb6KWXdluvShGZetCZ3N4t3Le/YHXkT+6Mk9igzUkcAeTp+PBzgmmUpzhwJZc8TPnrkpPZ2MTCNGKtGvWryWgpYe8qhXkE61p9UnGMNZ/ZkxdECnn8ykQKNX617wu6fLDk2yFnz2hqrEixXhtrYb+tGa5a9Z44Lqjq2sGRwp5n61R0Xug5xHnDxNqD+KYM30lHiqCSE55GLwl1wbndfHpQOAZvF5Tpe8EY4rEkaL6nYcKVoIOJXUcw39WjGL4H3mnPdidPn3p1kMgGBb9hS1NJvkD51IMvYHCWbh63Kk29vEpRf+reieH0/17FRh6B9zwxk5MWLZ48sgbj1XtvrkrhffKYB648sUMXHooXVESWHDeD95c3QvaxZv5Y8iB74JovOERE3g8WRn7f3Q49fD5RzM5U6GSBYcG3w43VPmFR9RCv3uQvpT2x9A6SSF5+ochNxOhim1ASKZYkMHMvsJc8ur2MPV8c2JZ9VcVYh47hBxwQv8MYwq+xPNYGX2cvY4tGNFiN0R1RxoTg1cRmiI0wmJ0FVYryFVg6dd3G2XuXm3z9qccjRTgzx5i6+oyu2viTX3QUiE44clEge04Vr1IkIsWRDlzJcey5kjKNlx57qvVPb/dE2xn9ZGYlqJOdumteh849qhSqCZ5rrHrT2mnFnwGPX31aXqUwz2SmkRjlC38powExOteRN/K7xyKpSHFcJV+io0z1oAb9e4zhlzvvCvzNU8dxnOdgiEt07n3pfJECAABcECIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgApikaKLPNAnfMsbwry/v7zx7nw/Z/uOZWoexP1If+GtYEpua5S6TbN9N73OfFxoif3uaZ4bffb269E5sG8xZ++C9o5WeNN8vbc2213ijnvh56LrLD+j0XsaJrdD7bVUKLkvnXMrAziVeJXCvAPu+IZ1B/WSlsmLFOoTwREm/hyEvcSe3HGuYYpm2LivbDC+wnv+e3fW7/veOiyr2+7PpvkIF8M+tIsZ2u2SS262NfH7BnszYN3O2bpNr5iKHolosDKRQq6D2DoveVrJvHr8xSkNzuYqV/cjrr2W5ISj39rU1/TMWxnAaaQufAzfyvjZgLwxe/5Q6D2LIlul0M91Sky/UORk52zD5MSPidbd4aNnzqoNU82mf//+/EzHIsXei2o97CdYDO/e/anFnB7bkaFneLdt3LNQDo0U3qJ5DxLwP2SwIdMAACAASURBVCGejpTear39OduR1pL9rBf7SUN6BN9jKwM4gcK+FPEqhXxES0mVvrDcMLd3i57ylig0/6xIMa3N8Jy6fMzG6vbGOxy5xwdEJ7aMdfyeA1/JDOk2Yi5VGU2Jd8VNPmBrn5VafLkmEynkgheekAcPoNKfE5EiHFkwaFnreay1NOTYIM2WVCm+11YGcER2pAieq5btS9GZD1/1j3nTaPTDz4JHoY0t3VY+1v43RYppqXfbVhxq59Y/8nzI4bm94WjkkHpFd23ugaKC7tySqSF5E5OXP6a86Dc2TeOvt2mIeZcwL7NNLy249FA0qNxx05eidIch1WNlqlJEI0V0JsNVn9osR1hLbrTTnB4cKU67lQGcUKJKIaNDOlLEWtBgSNcubrftdNgYIoU7UExF0aYZC8xisgcdLsKjUDjLpxymaFbn6xn+CORl7Xk974KObeEGUHXjZru1j9zWwTkWKRanJ9c0hOevvbfXdPNT7UVLFCxYqi/PAVUK7xUdKfwZkJGirJkzlzicmD1vxlweaS2Jj83/uyy6faOtDOCIspEieRLadqJtykQKdT6drFJ07dCS6lEe2t/qJ1UphpGkuzUKsfBnHpP11go3rxxTcC4pT1sX94MLr31YV9l7tfrGRevaZrvzzsb11begPJPea+25M3oPyPKPG22z7RKRQstkAf/bEJvTogsfx1hLerVYjfq06ME1ukRfiv5MWxnAUR1apRj+iJwimFWK6BFJ+92RQh4tY9eTwrPd6bNhwz/+2bRt02x38zE8chYejHR8xTjYj8NFj+/y+oisOEWrFNO8+t0MokX2YNdIdHWItf3jLKktZ0WK7IWP8m6D8jJg+OVKdddIqbyW7MVRB4awcuWu80zDfJetDOC4iiJFcKbif10XRops5cMaZfChhW32T4oUqv31xmu8HDuAqnU4dQcQLYAXOKwShX2FI7wEYO8C02f0xPKRwlo01aYk6ySLz1/V7MmeA9Oyh5EiUqUwrkJF2l3dBMsrgVaByHU+CUoC3sBHXEv+ZjR382Gs8tPfZisDOLZ4pBCHff39PDxSyCGaplk3TRMcAParUux+VvfM1MXh2HhzV917ry/GPC3ZiIvzQyuijf083YjGGBhmgnnamUgh18jc6GQbm8RpqnWOn15Psal0rb3PqPYsEynCCRi5eawPBVEgrPmEKT4YVGcTtWmOspamVSUKKmHVwIr6597K6pIrgGOKRIrO/slYzB6RYmpXRJeN6KnNOLKDI4VxiD/bMH3ymChHok8Lw6sRdh/L6EjVnIyH23AziZke//RipXcen7vwoXLOVsZVIVgEtdHNPcBch+WNZddGto3O0tm+FNEJGG/r8o9/jUD9v1ea6GWjbhU5+uOsJfm6/4bYhpGRnXcru6EOvXAKoIAdKeYfI6avDJtXS+VndGs4vqIP4/pCsvwFf92+FN9Q4oKFWhGx1d9sd/rqVPmWWnTmZgUH/xp4pkphs89f1ZKIGewyt15bi9/Y5o2/84w3kGsRKMQyJ1Z20C8gWNp5LKIOpIsaQUEwDEFz0hNJQ19OqbeWYtvOnOHYcp9xK1OlAE4o0ZcCR0YfMgDABSFSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqCAeKV5v71dXm6dP7+WPu6v71dX96vYj+snP97XxQQAAcMGikeLf0/X96ur5Vb/69bhZDZEieGv0+b5ODwAAAC6QHSlcKcL9Wz/+6/u+f3leXd2vrt9fh2ARK1S4VDF+CgAAXL5YleLlWWaCr89/LigMVzSGGkY0VbhiBpc/AAD4JdKR4nqzurq/e/l4ut6sdN1i/nf9/mV8PpM5AADAZYlEiq/Hzepqc3c7RIr+63Fjh4OX52GA0OstPSoAAPg9IpHi9fZ+dfX89DhGirEXhft39/i+vto8vbyvo3WIuTcGPSoAAPgFEt0zXTfMKVLM/5ONFCqCUKgAAODiFf3iY/P0uChSjB0p7l6m/zn2YgAAgPNK3j3za78LH+PAz6/9/LtTqwsnAAC4GEsiRVmVYqxwTJWJoZ8mPSoAALhotSPF+EMPWZZQN7QAAAAXaUlfivyFD3nJQxjvfMXlDwAALtZ+VYrhosanjhSuv4XVGZM7XwEAcNlqRYpUnhgUPMIUAAD8VIsixe2ze3KHqzqMPST8Lpk29zgxflMKAMDFSUYKAACAMkQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFSQixW7bNNudfq1r1+t128WGXwcfiOra0oF32yY+UTdA4u1poGGYrl0r0yfdaKYhjVE0252Y8WkNde0wGv+/xseNOXDKVx4AAN9OPFKEDfXwSqoB79pk26+HLGlBhziRbn5l+2211u7NcebUlIfPDi/NCxaZOZcJ5BqYRtB283zYoSQIIPa7AAD8SHak8Frm8dx9avISzV88cETTQSIBGC27XydxzfdQI9l6YUDPTtdOg4xv2JEiko38xTaXqO2C15ttJ19pW6oUAIDLE61SqFPp4OS/adtIqkhdGjHHHRlgHZ7RGyFDXs5otrugvjDFhHk8XUmk6Pvdbhe9QqGizziUF1y8KyPqD6oUAIALFIsUopQfCwDm5YGuXTdNsk9Folph54ypYTfbYX2KH7/wMfX0yEQKN0pjCYwKzJhytu30md22baZwoFadGSmK+oEAAPD9RSKFDhOioZZtYdjqju127upHLKF4r6vWffjDjCrik9EqxfxmSZUiUjLwZnG+OjK8Mc5v23XtlB3EaMa3pwBioE4BAPix7EihKgnNdtvK0+up/TR/D5Lo4Di02YmrCaobxdzA2p8Y39VTSkYKOcg4++lI4RVU2ja+VP5L+iqMWwKqFACAi5W8L4VdpYhFCqMr5M4eWWGVYpqudbVhvpzhzVs0qMyRZv4paEmVYv7DW2ZjYvOA4fUf8YMRu1JBtAAA/GC5SDGeneerFHOPylHsNhUFVQrvMoeYVO4eFakqRfwXHbFI0bXeb12m0YsyhnddJbY65vG4bip24gIA4GfK/Yi0rEqx2zZWQ2/+FHNBlWIyFyOsQUSfi0SkEP/bteNPORPDNk0z9+KYhnPjH9dB1+1EnST8hYyaW3U5JBEpIrUZAAC+tcILH2YnANlRIHFHzbLT8VingsQvMNy0i/pSiHtj6usTKhfJVl1XRsSVFfUrmLmSM35k/qy38LttM9yhou0SP03ZzQPQWRMA8IMUR4rh4r/qtOiaxkzT50UOL1Ikz/KjUcKQupXWUBYYfiEaBBzRscHrSmHGmel3HcZ9MsIENUzR3eqq3YofklKlAABcEh4bBgAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACpIRorIozvsAbPD7bbN9OTz8EbUcjTTkMYo9PMxduJulOo5p+Ztv+XQsbts+p9J3Bg78QA0e/nU7baTwwEA8NMkIkXqDte6BZbtd+rx4vMDMtQjO43Hi0cacnmnbDFS99CNeT7sUBIEEPtdqfhRG2KU5ojE8gMAcIFikcJ43leMa76Hx1lsE48Xnx+pMecHO1JEml+/sTZTz/CYVC/7dPKV4RlfkYyUT1I6J81LlowUxRUfAAB+pPjDzY2W2ShQqMsZ87O751FNMUE9FysfKfp+t9ulry14lREvuHhXRtQfhVWK1PPWp4XL8CYYrWAAAPCz5Z5EKh4DLhr7uV0UjWq8m8L8ePFmu8tGisTjzI0+G+PjQMeHiQ5lhraZ5k+lAjNS5J6qnsoy4bPT9erxA8QQ1eJjJm0AAH6sVKSQJ/s72Sky8WTueJVifrOkShE5m/fqBvPVkeGN6cHjXWs9Q3x8WzzNPNaoD0OaJQo7jsj5VV06VI3EzAzZWggAAD9A/MJHCVF0EB9N9KUQg4zNbTpSeCf0bWv1ljQmMY98HNwtUUmVYnglsQ7Czw7zKeo0ftDoWjH5YGUTKQAAP16iSiHDQRAbVKsq29rULz7mxnr+KWhJlSJ6JcGYmCgzNE0TxBv3gxG7UjH+vjP+M1Rj4cfPuJDUTXlkjk1zDYVIAQC4VPFIIRvA3W4ny/apRjBVpYj/oiMWKbp2vE9FcM1FlDG86yrzH35RQLXwqas37vNlVQp9SUguQdvKEEGkAABcsHikKLj4EZQq9H2oprfmRlb86GP4KWdi2KZxv2P1OirIE/+u24k6icoo3iu9dzmkIFIUVSnW6r4bepQ6RBRGCnPWAQD45va6IXdwa6uivhTi3pj6+oTqwCgyh/wlqL6yMnXrnAZ1N5sYI8OcRdZ6/O7KRPqeXP5CCqoskrtr6B6RQl9LiY8aAIDvZUGkEG2w3dil7tIwlAWGH1AGxQHRscHrSmH+oHSuDfh5xrpF1zBFd6urdit+SLqkSmHWQmKRQqwqnRZ09rKSDFUKAMDPxGPDAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAWJSBHe6LLOXaJ3iTtiW7eMTE40dcfOxDjdJ0vuUJlZ6HA1GSvOGJd4WElynUZu4x0suT+QN95jbU09P0V3/Ezfxjx8155P7+Exxu1aI+Oo9Zi2ggUueE5OdA89y/45D5EYQHw+soDhnfQXfTf1IwWtyRt3sDeGmiayjc7H8IDg/Bbi5vhAkWikCL9owyO78weEtPThwv5A5vAWPLVLHBFjzZd7+HnpQTs2XLCajMPX/EBX+/kg6pmpZa2QPzfGSlIvHWtrqvVQuj6zGTFIFJmHrQSfsW62Lp4qUyNR5BsiY4OIR/Jm2qiz7J96lMk5TLyvv31yKCPlxuN+dPLBt8j8cognCpXGAX9+au0qwC8SiRTjd9pvlqxndCxQeOJVdNowHjr2ixTTMdg6GJdNXn18nuC0foyGUB9R449lD2bHfst7eNuwbcyW7ThbU89KfH0aC1T4kJjpIXN+AyjT0Lh8xmKr+UufVi9cC+GTZAosiBTn2T/9qeR3u9wnCyNFcZ1Ab73p0UD6AcTqIYXT3Bob3l8+IgVwMDtSzIeN+aDQtQdWjqePLThxKDl+yUgRTMA4LKiigF0XLjiFVA9D7d3qmVfS2GjrD/nPJWuaJjzG5esUwYawEolqRutvTTWh5Pq0hrcnqdb8lJK8lZirP6VmsM5jXsd2K9EQpspD2ZbtLPtn+SUK+S0zB/G2UcFYi5YorPXNSXndbHfeF2wYSj2v2H+aIJECqC7elyLXsu37ZRsOyPGDTdHh2Hq8+Py/8YZHnF7qExqrpFC63PahR7+6c09P9RaqqGaTqwHv5ue2qibZfu5pza1Zvj71R6LdB/T8N4nmdFq/+pGuwQNeh+m5NicewRaLXUxRS6F2SqNK4W3ds+2fCV5JJnZmEAn0hVUKFULEYoeryS24X4byFn23bdZtq3rQ+IgUQHXxSKHpg8OykqX4+sbOYcNT5WHMsd5bRqTQ4cKIFN6T0HVNOX7q3GcGiS2S14Ssm7YtOGIt7dC3G6+5h+diqWazytbcb30Og9mlkbBK0Xu7hliocWab7bad2mBxaj6egw/tUtMMl0fEmba9OheQs7LbxVa8mXPNutE5988o41u4sEpR3Jdi2CZWM7/WpxDj7u7KLtMeqUfgpe3MEpbu8wDSTlmlGMdYECmmqmV24qKUbdY3XHMbXpQOX0nU7KN9BMZ2oEsdmJrtth0L5f7BOXec6lrRZkYHMas2x61S7Ls+3VyZh3r/8C7KT/oajluafJWia4cwoSd2+IWPEqoyMhdL1CZzs3be/TM6TmOsC6sUmXU0b83kHjh+vXfbZliWecNbl43W4ts2bOrYJlMT9XcTqhTAYtFIEZ5RHBjTh0NOZDz+qWh4fhoZ2NU3Y8fF+GEhdhRe0GCIU+CCKYezkmnZVHM05QT/QOgfWN3JuBp59a0ZirZqkWGMhTerFOod8aK1ZSN7TOVIEYwiSG/6gtfcsokmUTaSi1LC0fZP773YV2pJpPC2R6pKkUwf8/i8aG6tDF20nCJF281lKh1NIrNHpACWi0WKknrgPl+3kkghXsxOOve1Xx4p7EHjMz0vkR6sIFLoeQgK5n4Z3Frl03WEYAbla8famtFlKRoimOt4pOjDF3dTH8TsMlmRQlscMOQodzv3m5pwxqd6m7y8IWarbZdGCnvQCvvnPNnk+lhw4cNf78kLH1Iy8nqRIkjp/tyN10fms5RxNrJdJ4gUwGIFfSlcRwA/we91nrcwUpRVKc4UKaYpqKY7ehZtzYpoinQpwjiB3elucmoZ7LgSu4RebWt600utT/NKv75clY8UyfXbtU3TrJumsT62T5UitUQFtQJxvSNemllepbAHPXz/dG1wQaXJrFIYE/Q34akjhS58tnqTeX2bjKtKkXOAGvkbuFTJSCFOleU130NOaytEivJ6aXJGj3HIjs6m+cK8AGOFdjzpVufWne6AIg78+iBoHVyD1qv21vSmFxuJEYbUx2SqSm44v/Iyr6m160jhChdea7lHpNj3JNW88JGYyAkjhfe6/hpNO1u21pQdwO1k6V2yTqSIfN3DSNF58yCGMPNu/Btc4boZcKHsSOG1Y329q+96POkmzTt4iQZn0SF7/0gxz15i2Y3qrr1M0Vmxzw+981tr5jKX2r3j7hG2pj/h2AxlJuaO6HaVQgUNeeo/xQfZqUEtdKQAX9YmZNvOcBnCnSW20fNh7pT7p7xdRe56Y6J2qObG2MfEFQc1B2XdQ6zyypIqhYgUW/lD1OiKpkoBLFZw4QP4hZYlCgAAkQIAANRApAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFRApAABABUQKAABQQSJSGHe9r3InWnFb2/gt8vzJuf/NzUHq9sNS5MZ+cvBjLLuen6JbKaXvD5q963E4nHUP8/iycscnAECZaKSwnjMYhAB1e+T8rXT7fsmjC4KHEKiHas1jyzOeVpWMFMdadrVoTVMWKnIPcIjdkTg6oPG8rfBpZOFzEAAASIpEivkxQqqhbTvj9L1c+al5n3wUc6KVjT69Qja1XbseliQ0PAH0CMuuZ2WYl5J4FZ+o9ZCtYKHGJzv7y2cstpq/+VGSJh6aBAAIRB8bph6HObx2YC08+1RkKUgfXTuc1/vtWr5OEcy2lUhUM1p/2dWEvHpIel3YD0nUs9eLlBR5Amd5uWGeQR68CABYIN6XItdW79uyDqfm8SsG4lmFwWD5aabiythEukH8JrnsYYyHLLt4yPdcoEiXbhLPIw3mv/HjiRUp9IMog8dSzk9AV5eaiBQAgJzSX3zopnrvS+yxs3J18r/bNuumbYMz7nCSZV0p9HORm2YakdH982jLrp/C7V3ziJYihsHs0oj5KHA1qFioMZo02207ZZohUrg+IdN1k6Zphssj3sPRD05UAICLdsoqxTjGbKTo2qGWkOlEaE5gbjMT82B3+jxilSLsNBG+YqUtN1dm7cXqS6HHM65VtzT5KkXXDmEi1lsTAICoaKQIf1V5YLMytG+R8YTn4aW/jgw/oH8cEv4uVYUadzKuRl592UMlPTPlMMbCm1UK9Y540aqtxH8cQqQAACwWixT5X0fuV/8+IFLoZtj41ae+rGDN4HQdIdE983jLHl2WoiGCuY5Hij58cVydyfJL0CtVzIlCwAAAhAr6UriuDaoh2ffM/ZBIIWv6wX0q/BGLrpBiIn4dQ75nzVfVZfeml4oUZucK/WORfKSQi2lcR2qaZt00jfWxoiqFup4CAPj1kpFCnPyLWro6qS05o5fntQdFCvHziKl3oT639rpruLkb+2YkWmCrBlB72b3pxdpiIwypj8lUZRQZ7GUK7p459c0M0ktZpOAXpgAALXpfCq8xrNWfQI8n+A2jGjB+58nwA4kfW7opxX5R4c3A8Zbdn3BshjITcxnArlKooKGSj4sP04fEOvGiClUKAMBipT8iBQAASCBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqCAeKV5v71dXm6dP7+WPu6v71dX96vYjPeKvx83q6n51/f51+EwCAIDvLhop/j1d36+unl/1q2NQuDLe6s0hiRQAAPwKdqRwpQj3b/34r+/7/uV5SAmvQ1zQhYrXWzFkGCk+39cFQQQAAPxMsSrFy7PKB5//XCYYLoUMNQyVKogUAAD8YulIcb1ZXd3fvXw8XW9Wum4x/3OhgUgBAMAvFokUX4+b1dXm7naIFP3X48buj/nyPAzQEykAAPjVIpHi9fZ+dfX89DhGirEXhft39/i+vto8vbyvxbWPIVLk/hEpAAC4SInuma4b5hQp5v+xIoWHX3wAAPCbFP3iY/P0SKQAAAAJybtnfpVf+BgHmK9rhJFivDKSu0cWAAD4gZZEilSVgkgBAMCvRqQAAAAVLOlLwYUPAAAQsV+V4qXve3erCSIFAACoHSkK/hEpAAC4QIsixe3zeB3k0z3jw3j6eRRVCgAALlcyUgAAAJQhUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACpIRordtlmv2y4/lt22yQ+32zbDMF27VqZPutFMQxqjaLa7rl032514YRhn2xn/NT5uzIHjRjsPKXTtOrc2xJyFHy1gjT29bsN3rXnYbRu1kOrvcOn158wlWmyc0cia8BdwmMFm24Uz2nb7rE+9QXfbpmCxokMt2+sA4LdIRAq73bHaIHkktY727s2uXY/NynykHj47vDS3j5G22R3LZUM6jaDt5vmwQ0nQFNjvWg318EquAdd/RcKAmLiVXIzB48OYM2Qu2vjqMMVYTMlvcr+pLuWmaMyemJl5+sNm3u3C94Npl6zPcCUWxOVU8Fiw1wHAbxGLFAvOT92BdDgCb72Dt24FunYaZD5tNSLFFD+CSQUjt9o7/3XvdLdtE1UKLxONVZNY/eLokSLervkLOc5puETlkcIb+Tzd4npVYnSx83gdGaYZniZuFaWkgvXZtWMejIkVI2LBtnCvq1HeAYAfw44UY3ueOAjLJlYVFvzzQaMx6UoixXCOmqxwe5URL7gYjVBplUK9HcxC07Zmexf8JRen4Pw/en4daczVok2NphxUttBqOqlIES8aFF7gshfCWrXWBEXla9pvjLW9ZH2WXeYQcyOm0Wx3w7yYUaZorwOA3yLZl0Ifwc0L0+LQHu+mMJ0gT0foVKRwozQOykaT1rXr9VD5cJ/ZbdtGtkzGfMtXI9cORGU7tWZyV/VlpJhXQ3hWHWuExpURuUqhIkXT+C2nihQycVgNsp5Tr70cqxT7RQpZ8Uj2pZBvjhNrp2tl+65P1y3DbS1j/xEv+TFQzLZXnCre6wDgt0hFCnnatZOdIoMr0+IQGq1SzG+WVCkiTax3rJ7bg+GNqQHu2qkN8coGsikwDLMnwoRo5mQDW3LJ3m+e5KUHf3Hiy6uu1kthlcJfQd62sJthf73mzv+XtpW7bbNumqAAlJgZc7aMsZasz3Hq0TKLlyjUGlPVDTHgwr0OAH6L+IWPEqLoID6a6EshBhkP+ulI4bVvbWsdrI1JzCP3zo7zVQrvIsG2lR+Z2hC7jh9tw+f/9U+ajYYxHJ/5rtWXovfPrV3TJ1fm0LMkFinsOdhf17adMf+RIFEaaErXZ9c2/k+EohHCf1NfMPG7k5TsdQDwqySqFPZF7PEvXRIXB/z4hY9eFNXn43xJlSJ6fcCYmLwO7l8JEKeudqVCNzZGleLgSCHiVDddYZgDlr8BosUff12YF3iMSJG98JFPk3s0l7upU2hutHo9BH8FkaJofcqVZ1TNjNFPL/ibM7KLp/Y6APgt4pFCHpR3u508vqYuFaeqFPL/dcU5Fim6ttW/uJhGL8oYdgth9KlTTW3q6k0/Na1tW7NKoS8eyWWVXT6tFWSEinikCJbIihSRKoVxLcbb9HtHCv1306ybpvXHtaxKUbg+Y8nB31/CokO4i6zHHbJ8rwOA3yIeKQoufgSlCl1knt7yi//jsbn1D79epGhcrz7vcrk4A991nTz5VRnFe6X3CtOxSDEvd+0qxTpRdLDKL35G8JqrbKSYJ5+NFMFaiJ2KxyOFH4G8OfFrTjvXYzS1HtJViuL1Gbm8kUrGbkBzYZfsdeaOCAAXKdU9M0oei7t2rRq6eKRw/7cTPwAIL1fL+ru8AC5b9blxnwZ1N5sYm705i3h3V5j7ESSv0Mim1ex+4XXRyMauRCPujdKfaX/Nq3UXmXl/U2T7UqgPpeYzGimSC6gKHnMfiOl/vB4L+dW5ZH1GZjo3hkSkGMdZsNfp6zOpiQHAz7cgUojmM96qxDTjLynMYrLo2OAV3UX5I5iOu6odvhe8Mt/qqt2KH5JmLnxMkWKYO9kql5102hWa2EqdigOZxsdVMOwqhd+3RUwj13Dr/hfm0kS3fTqK7NyN1P1uNeIPqy9FOAO5SOGvT/fiOPnU/uktZ3wzl+91O6oUAH6TvaoUgCd3EQEAcPGIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFTpLLTQAADW1JREFUAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACpIRIrP9/XV/er6/cu98PW4Wd1+uL/+PV3fiz/dK1fPr2UjfL29X11tnj69gT7uru5XV96Yw/GEHwQAAGdUHimGP6/u7176vu/7l+fVlc4E4/DPd9f3qyvxbwoHaoR2/vh63LgPRqKJm41UdgEAAKe2pEoxxojr968xELh4Id5dP/5zlYapyf/3dH2/un7/mkfoShHu3/rxnxz/6xAsYoUKlyrGTwEAgPOzI8WYGKZ/d49TbSD4py5k3N+9hFkkjBQyf/R93399/nNBYSh7uBmIpApXzODyBwAA30S8SjE227JK0fe9WZ/oe1eZ2Dx9ymKG+IgZKa43q6v7u5ePp+uNnVeMGVCzkepyAQAATiceKYaqQ2mkEF0rRH+I4fLERxgpvh43q6vN3e0QKbyOn/5og/giZo8eFQAAfAuxSDH1giyKFNOFks3T59DYP7+6OocZKYZhnh7HSOESibzOsnl6eV9H6xBzbwx6VAAA8A1EIoWuNDy/Br0rdM/KqYHfPH1+3KlSxP3dS6R7puuGOUWK+X+ykUJFEAoVAACcnR0pxC8yhobf6xhhVCk26+v71dXm6dE19rcfrsNm9hcf46eKI8U0D7GOHQAA4MQSkeJ64/+ItO9jfSleX4YAsbm73UxhQlU4vO6Zfd/PZYyFFz7GgZ9f+7ArKAAAOIvoj0hdi176iw/vbpiuDjHdxKIgUpRVKcYxTzMwxBd6VAAAcFaRvhSvLx/Gra76vjhSyJa+ZqQwfoeibmgBAADOoujumdG+mfI3FypSjM380HGytC9F/sKHvOQhRG6hAQAATmbRDbn7vqxKMQ7jX4wor1K8iOGnSOH6W1idMbnzFQAA53WESDFemwhb90+/6rAgUqTyxKDgEaYAAOBYqkeK4RKG2QEi6PHgR4rb6Rac6t5ZYZfM1Azzm1IAAM4gESkAAABKESkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAV2pPgPAADgv//++++/QyPF/wAAwK9HpAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFDB0SPF28P65s9f+crfPzfrh7efMjwAAChx9EgRNtjpJvy7DQ8AAEqcJ1J4dYLvPDwAAChx/L4Ubw9DEz613OGlh289PAAAKHCSSHHz5+///v55uBnacNem/5DhAQBAgVNFir9/bh7e3h5u/vwta/K/z/AAAKDA8SPF0Hnh7eHh7X//e3u4+fOW6brw3YYHAAAFThMpbm5uhkLA28P65ibf5H+n4QEAQIET3Orq7WG9dh0g//65mf/4IcMDAIA87p4JAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACo4BSRYng21yT7kK7vNjwAAMg6VaQYniVe5rsNDwAAsogUAACgAiIFAACo4Ax9KbKt+XcbHgAAZFGlAAAAFRApAABABUQKAABQAfel4L4UAABUwN0zAQBABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAVECgAAUAGRAgAAVECkAAAAFRw9Urw9+M/lyj4IdPljvdQnMsMPw84zEM4gAABY7OiRIgwQRZFiwcPH//65WRIK/v65Wd/c3EyfIFIAAFDBeSJFug1fGCneHtZLE8jD29uDmwciBQAAFRy/L8Xbw9DgT0ki24YvjBT/e3tYr8tTxTh2N1tECgAAajhJpLj58/d/f/88jFcbpsY8xutLUZQVhlhRMrQLLC7iECkAAKjgVJHi758bd7WhKFIsqVLoieX6Z85jn2aHSAEAwKGOHylc34WHt6ERf8t1pTgkUhR01hRjf3tYP7wRKQAAqOA0keLm5mbuuHBzzEiR//mHHPvfPzcPD0QKAAAOd4JbXcmLEUM3iaI7Ryy7z0T5XSxUYCmaHwAAkMXdMwEAQAVECgAAUAGRAgAAVECkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABWcJlKoR3ulH9IVPms882DSYdzzAPmHlS990BgAAMg6QaTIP2/cH1oHiIJIIR+YXhYp9n14OgAAMJ3o4eblLbgZKVIZYfjA24MbhkgBAMAZnOLCx9vDel2eKt4ehkGnJJHJCGNAcB8jUgAAcA6n6p45xIqSZDFGgr9/HsarGVNYsLmA4CLI4r4UpAsAAA534l98vD0U9s/8++fGXc0ojBT/+980OFUKAABO7eQ/Is121nR9Ix7ehpDwlu5KIQPC28P64Y1IAQDAGZw6UuR//jH+gmPuGHFTHCn+9/fPzcMDkQIAgNM7fqRYfBcIeXFk+HBxpCgZnvtSAABwBNw9EwAAVECkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABVUiBQAAAD/HRgpzh2JAADAd3FQpAAAAFiESAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACggkSk+HxfX92vrt+/3Atfj5vV7Yf769/T9b34071y9fxaNsLX2/vV1ebp0xvo4+7qfnXljdnw9bhZ6dkDAADnUx4phj+v7u9e+r7v+5fn1ZXOBOPwz3fX96sr8W8KB2qEdv4Yg8JVMprIIYkUAAB8C0uqFGOMuH7/GgOBixfi3fXjP1dpmDLBv6fr+9X1+9c8QleKcP/Wj//k+F+HuKALFa+3YsgwUoyJJxNEAADAcdiRYkwM07+7x7FEYfxTFzLu717CLBJGCpk/+r7vvz7/uUwwlD3cDIhUQaQAAOAbi1cpIlcWrPpE37vKxObpUxYzxEfMSHG9WV3d3718PF1v7LwSRBYiBQAA31I8UgxNeGmkEF0rRH+IIQR8hJHi63Gzutrc3Q6Rwuv46Y92mBaRAgCAbywWKVxnzLJIMV0o2Tx9Dm3/86tr9c1IMQzz9DhGCpdI5HWWzdPL+1pc+xgjTuYfkQIAgLOIRApdaXh+DXpX6J6VU3fLzdPnx50qRdzfvUS6Z7pumFOkmP/HihT2HPKLDwAAvgU7UohfZAwNv9cxwqhSbNbX96urzdOjqzfcfrgOm9lffIyfIlIAAPBjJSLF9cb/EWnfx/pSvL4MAWJzd7uZwoSqcHjdM/u+n8sYBRc+xgHm6xphpBgnmrtHFgAAOILoj0hdi176iw/vbpiuDjHdxKIgUqSqFEQKAAC+tUhfiteXD+NWV31fHCnkDzSIFAAAXLyiu2dG+2aKHpo6UqifdJb2peDCBwAAP9aiG3L3fVmVYhxmuodEbITRKsWLGJ5IAQDAD3CESBFt2j/9X3AsjxQF/4gUAACcQfVIMVzCsJ74Nd0La+JHitvpFpzq3lmFqFIAAHA+iUgBAABQikgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgArsSPEfAADAf//9999/h0aK/wEAgF+PSAEAACogUgAAgAqIFAAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKThMp3h7Wk5s/f5d8QA8eex0AAJzXCSLF3z83cwBQf0S8PUyJ4e+fm/X64S39OgAAOLsTRIq3B9n6//1zk8kCbw8ydMwZJPY6AAA4v1Nc+Pj752Y9x4JcEJAJ5O+fm/V6Pfwdex0AAHwDp+qe6TpB5EPAUIwYQ8P4f2OkMF8HAADfwCkixdvDlCXE/yaHXuveF65KYb0OAAC+geNHCq/TQ7YPhNfzcho+9joAAPgGTtQ9c278dWdNV3xQ5Qb5ATl47HUAAHB2J+lL4XpTWjeUMCKF+oB6J/Y6AAA4M+6eCQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACogUgAAgAqIFAAAoAIiBQAAqOBEkWJ4OJjx1LCFwy8dDwAAOI1TRArxUPK/f27yDxGNDb90PAAA4GROECneHmRJ4e+fm0yFITb80vEAAIDTOX6keHuY6wl//9ys1+t0fSE2/NLxAACAEzpJpLj583cMAeP/ZSKFOfzS8QAAgBM6TZVCdqcsiBTm8EvHAwAATuj4kcLrSZntAxEbful4AADACZ34Fx+qR8T0gvGSNXxyPAAA4JxOc18K153S6FFpRIr48InxAACAc+LumQAAoAIiBQAAqIBIAQAAKiBSAACACogUAACgAiIFAACogEgBAAAqIFIAAIAKiBQAAKACIgUAAKiASAEAACqoECkAAAD+OzBSAAAALEKkAAAAFRApAABABUQKAABQAZECAABUQKQAAAAVECkAAEAFRAoAAFABkQIAAFRApAAAABUQKQAAQAVECgAAUMH/AyNr8yvoiyplAAAAAElFTkSuQmCC" alt="" />
------------------------------------------
题目可以抽象一下为计算坐标系上两点间的距离,即
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsgAAABaCAIAAAAq+DdAAAAeqklEQVR4nO2dLZyyShSHJ1AoBDZQKAQKhbAGi8VgsVgIFovBDRbLBovFsBssFoPFYrgEi8WwGywWg8VicAPFYqBYKNyA4oAKwzf6nifd33tdQRnP/Od8IhMAAAAAACAmUNY3AAAAAADA6wDCAgAAAACA2ABhAQAAAABAbICwAAAAAAAgNkBYAAAAAAAQGyAsAAAAAACIDRAWAAAAAADERnrCAgEAAAAA8CpkLCw0Tcv6GwAAAAAAIDYyFhaqqlr3oQAAAAAA8PxkLCw6nY63wAEAAAAA4AVIaadXFAUhVCwW07kcAAAAAACZkJKwsOMg6VwOAAAAAIBMSENY2JmbqqqmcDkAAAAAALIiDWFhZ26uVqsULgcAAAAAQFakISwgcxMAAAAA/hHS2OwhcxMAAAAA/hHSEBaQuQkAAAAA/wiJCwvI3AQAAACAf4fEhQVkbgIAAADAv0PiwsJKsIDMTQBIk9NRU1VVVdX1dp/1vQAA8ATsNivLaBx0I+JbJb7fF4tFyNwEgPQ4HbstBR8UJMrl1U7L+rYAAMgp2m5VlkXcaCit7vEU/g0TFxaQuQkAKWJ8VAsIofdSRVGUd0mwfoAUwy23h6zvDQCA3KFrG4GlEcXUFEVRFI6hLKMhlZTQnotkhcVqtYLMTQBIje1izPLyEgt/qMNPy05IlWaGNwYAQD7pNStlpWWHPwz90KgWrY27N16Ee89khQVkbgJAmnw2qsvd0fWP3+0aQgghZqtnclMAAOQV41Au1dxBj9OxIDBRTiPJCgvI3ASANBmPx7f/qK0u+h4SLQAAwND/1urP5vbfBx0FIcQXQ+YwJLvlR8rcPB2/ep/t3jDum4rKcjHb7iFc/WSslwv1wv6Q65O7vl1U6u0415i2QgghWjhEzfXOGbk0EYZ+UNVZ5LR6IDOeyFbYTAbdbn8Y46pTBx2EUKn+Ge7PkxUWoTM3F9OhwDG15qcWJTM1Zk7T4Zcs8lEiT0DK7DarVr1CITcsL3a6/TytLhxj1PugKKbTG8Zyf5bHQq624nizvJBDE3HUdr3PNktD1OkpeU5bcUY/7JWyzAnSdLGO5Q0tj0V/8hPuzxMUFuEyNw398KGUEc2O1N/k7i0Qhn4Y9LsCx9hLDYTFM3D6btdvrIQDiuGG05w+yvViyjGUIJc3kV0X0+82QpS6+ovlxjInhyZiv113mjVsTwJh8Vw8t624YAw6dYSQ8tGL7LowagWeEYp5rAoJkbl51LYliacYbr7aJXdj5OiHfb/bsctvQFg8DYbevCQ2+9Ls3clLyAPa5odnaYrhIp1CDL0oMEWlE999ZUneTMR2vWzWSjdrCoTF8/AStsLGCmEIhUqUIM7fSqUQGqjhSy4SFBZBMzeP2kbmWYToyb1cktQ59dp1SXpXFEVRai5pAcIi51h+PJtiuaooiqIoksDdtRe5faD79YKlEUL0QA3pk5wNPxlO2uXbkUtIrkzEcb+uFOVSpaYoSqX0DsLiSXkZW2Ez7jURQiwvbzR3gRgZRr0khs6usEhQWATK3NQPu4LAIoTaX9PkbikQu931SDQbfj7X2vqX+VvPaMu6c0J/MHZ583ablVKW3daCZtd/Od0KltMvhBCimElwv8Vxt+K4vBzuI5I7E3E67q6G26iX8MaFICyegxezFReMdq2IEOLE4j74iWI2/OTlcsSTSILCwnoKnQ6BD9bQqwUBIcTL1XwerAxthfssQFjkmVZVRgjJZcUj38p1TEEIVVv9NG8yEB2liIJ3zzT0Q0kShrNlcjeWHrk3EZYLGoTFc/F6tsLidNyJLI2Cd8/cLlVBkLeRa2GSEhZ2ggVJ5ubXuYEPGi+2Cd1PVIw/3C8GwiK3nLQVjZBQqPgq7s+6MzTOiMe8lgieDlueoRBCrFgkPkmcmpVCdzRP9MZSI/8mYjn9BmHxXLykrbD5mfStm1U6A8I/Oe7XkiitdjEUuiclLAaDgfWpNM2nKc9mMbacAUJRyfHD0qVrUQgIi/wyH3URxdx2n7zldNwJztyZRY53AytuihCqNHsELzc+6+WP/iTpu0qHpzAR28UYhMVz8aq24sKpIlnHYWq88M9J0g/bgiQt1vEMQ05KWJBmbp6ORZG1Xhm6ZDYVQFg8B5/1Ermjstes4MYit6dh0zRPh83b2bLRqk/OhNFrVuufd9pGTYffWjKBBHXUVxRFaXXjf+snMREgLJ6OV7UVNvNR17pbX0+nftgVZWm2vPlQp+PXMEwhTFLCgud5RNAaa/rdPj8omk/I5MUECIvn4OuzSZ6IsFIHT2QsmhUJ+R/cT91GlZfL6g3NWim5OWRns8uH6rHrybOYCBAWT8cL2woL47i9nEZQZ/AwJ+GobYsip7S6LosxGQ3eJSHcZpeUsDh/GM/MTUP/s/1L77V2QncSEyAsXpDDeoYbi5y7Nxfjnn2rw9m9ChFDbytl9Jjk1m1CwuKJTAQIi9fmuWyFjX0aoRjhri4/7Ncyzz40GdTbNlQ6SSLCgjBz83oWQehzOEviTuIDhMULom8X2E+I13IbwDdN0zRP+6Ud5hVK9dsXrBdTxYtGcif+hITFE5kIEBavzXPZCpvpl88vaNhre5iMTn8U7rqJCAuyzM1TSbju1fNNuFYebo7aznLiWN8LS9MrzJpu18tOq2F3PnkvVUakfYdSEhaGflBVdfjVUxRF5FmPTD1tt2lYDeNotj8K0DQ9h2xWP6qqDvpdRVGq5aJzpJ6xmI6uPcooptZobXbxjOn8W07tZxpjmGC5mKnTcV1RykWZFQoPS8lPx363w9IIIVRWWgTlHqd3zpYW1HyTo0l4yQiLRExEQostTWGx26xUVe12Woqi8Czd8szS1TY/lsWr1NvP3ybtNFdVVVU7rYaiKLLI4x5+/bAf9Lt2szJOkDrdflwfOSFbcTpqqqqOBn1FUYqy6FNNfTpabV4F6f1nQ7Qs99htv4nl1J5/IsKCJHNz9zOJUQCO+p27jdJsq6Ef9q0HXuJa+5vgCokLi0G3Ze0xLu5eazkbO19M/xDkNueLk9a4aWlqYRuL7XJmTX1zQ7OxzNrBgwvREwNX88ndu5UrzdvVbbWmxl/mvT1Y2I5NFKSKLAWSEBZxmojkF1sKwmK3mr9Lwu0NUm/i4fGOoRSvH4rM1uWOzY9609v0/Gwu50Zj/N29az95qRSiSdQt8doK0zg2q7ed4BFCaDR/WMGB90ph+AJRjELfYhsXUlfxHMl8SURYkGRu9j+q12cfdui7zXq5UOc/+mE/6H7gD8lq7b5fLwSOYTih1ela/gzX75Og3D8NYWF5WfBpZwghmpNcVmMx6d9ayCh93bPB0Gequtrstuuls70dtdgeTdOcDjoUQtJ7qT8YWUdMfGgLxXDR+991G+VHX3IIVvOJ9QRL75Lz4bhTvY77teh8ygghknEedtEpQojmi/k5fyYhLOI0EckvtnRDIYY6+sL30cc/f6OAHbioN/kZQzSH/VZVVe2oL9Qxjz2XN6limKahH+qVAkJUpdaYqKqqqu26o4JDKjeiBy7itRU42/UPfsbwsAPfl24uFpNfoo66FWzrSu00koiwsD6DZ+amURKuP4uIbcmdHARs151vjpsflaWR8tF1yNbTsVK4aguCtZJqjsVs3MPFN365ze+ERohiOEVRMMvyhB4LjPVseDXJYtkwzUFHuR0neBmccYaso8NjjKN0yZn2SJkOx367xFOicN+poWtWa+pSpYYfkUk8Fr+Xpjf28o73tkOTgLBIykQktNjSz7EYdRv29Tw2DHtHRAgh9LbLjxoNBd6rqtEdnY5aWeYFubx2RqxwCY6iF3EkaStM0zxs5tcYJ198JIM28xH+ofoToum+H9WrkrYWfArELyxIMjfxNDQU68g4vPc2zRfXyxlLU93RnaQVpyHwckCZppl+8iZuNextyWrUystla0iBoR++ep+Koqg5mMkUBdzFp3QGw886w4nL7R2vnaOaPFr/O7tVIiuWIk8ZvoO2mV83Jiy5uqMUEc1O5ucj5o86UhSl2x+RGHxtpeKLNgkbF47YhUVyJiKhxZa+sMDrFDyi/oZ+uI50p8W8SNGw4JGd6WJdlvlitXEn1oFJAYRQuRGpw0rStsIpo70Wz3TYs13afnvWGWdLcmqVSt5p/MKCJHPTVRMcY+Ph88QmhBBChVKFZ+n294ORRYbGY6bLr01h2sLCOO44e6VR3P5kmqbZa1YYToreyD1vtGvXAGqtVqMY7lFqkmvl/IY/fxm1gmWhqMlPUiXpLeys8DVdmucmktRADTm/w/hb4h8/P8PQYxcWyZmIhBZbBlUhmAWjxbL3a/XDmn1QTPRMnPZ2+jLFCNWyLJVqjzIorAk7Fm9yNcJV07AV+N36eSKtiXf0+kAkEfDSKpRW0Dx+YUGSuenyU90vyg+Fqz9asdZ+/N07oo9+wacMyk3xTL3hbL1bTin/rotPiPNsgS578F3w3GwUIRfJ3jOqHwnOE8ITvkr1T/N0LAhMpDCnc2YNI1Xiu9lIxC4skjIRiS22TMpNS8JVWXjvRdZcjPy4uMLhcjPTrOhxynJkJERYmenYiuFn3b5ZX1eEUuTJs46cU2zidP55EL+wsO7eO3PTGfZD0+VfTBfH6/EQzYo7r3xgh1ZodL0LdjMQFngJcq3VLYlsrgoB4mLvNN/ep3CXZQmZZHA6yDyDEOKkUqIFeLg/n+Levz/rQaaI3eUo4tk3lJCTktPYhUVCJiK5xZaJsKiXBMIrDjoKorld/mdnefLlzF70Pnzjh0xfj85D0rIVs+En4f7yt1KpIJUprsyMWDMaHxKzsNA0zbp7756bjbKIf9TZOh7z6GqO5vPVOw9/fu13MhAWx80c/zgML0fKRjb02W2f52hs9zE8OFyqUwy/9fyQTvVNhVs4VtAx6BTyUBhlEa/+iMGVWnRURNKJp2+SLZtzqQUrkiybPUEsLyETkdxiy0RYtGsF+5IekRr9b83S6O74mLtYVRixMosjNcGRzytXW96vxr+c0DGg1GwFvtg84/JGvSQGSvVwJWaJ5UYc9+tDzMJCJeu5WSs4ek7E1R4Vd59yUsV7F3Z0UvMv3cmk86bDARM1NuYsaI6FOL4HoyK92W/o66bDH3G42rnLqEx6HEcnDF/wM1YsKRFlh8siSpYJGQksG5IU/WRMRIKLLRNhgVfkejh1WlWZ5iSNeC/CQ3gxEcMXctwusCAWvfDb6fEyy3BRjDRtxe53Yt+tR7sRaxg6YdqmheuAGi3dhJSYhUWnc8649p6Wjj9yFJ+wwBOGvx+HTi0clXvU287nFrJp6Y3XVr2ksLBCv2do/s/P9uGlU3L1I+jldG0jsDRKsT80XtwYi7BI6LfzkIyERRIfM9HFlomwwKXPozQUawUGsh75FBZ4OU/Bd3CMvsNzaQgrMx1vkK6twA+6j6IVhv4nsnRQM+I6QqeTmOUlLDRN845o3EI4LT0Jq2EcN/abUm+SbzARD+IStGjNRljg6qfW/or0XrkMhdiDfRFJXwrjKEZ5CpfmJX75NLGCGTiKe4/uXkhbWGQUCkniYya62DIRFvgnuls4Y+iazDN3e796kM9QCB4d89WmjsSCEJO00rcVx42teh9FK3rNCsXwGy3Y2sqXsLCrRlerAFLX+hPfaekuP2csAVR8DyaxGnhyOEEiTDbCAg+8pePCShn8UOhrLBy2O3Am2qldK6GEU7tvMfQ/Hmtn8evnGfPFteMmHgohI/bkzSRMRKKLLRNhgfvD7m6BvWaFZoWgW1EewQU6wbkRz9z0zca4IRNbcRA8i4etuEwY14tTWGQWCtE0rVi81tQWi6TGgjBz07zJzIol5RuvAw6kZ8latGYhLAy9LDn68UbelXLGSbM33aBOpqBtN63as1KtnfI+jDc6Q6HsggtnjkXyyZtkxC4s4jcRCS+2TIQFXhB7uwtaW9HzNfu/B95TxP9xnA4idm4M2nYzI1uBtT94k12XtjxP4WKprhyLbJI3bUcFDqHTQiXL3DRvaskCpaLcB/dA0LzveGi8cxFZbXcGwkIddGhWrNeuaRZRG9PmDNwW+/5mnB3DmFWQQSGT/gdCqFBpJNM17yHH3YqlUbN5DYRHbUPuqgr5Z8pNo5uIpBdbJsLitPu1L+lKO7C2onRqC1MA90D4SqUfzHstFJVAP/qsbIVpmlXZzizm/pxXt1ojenZPeIirKiTtclPcUYF7LBCx04Iwc9O86X4T/RiHl6f7plkdtgvbaBDX7aQtLHRtw9GoO5rjYdRUkwOSB6+Y8F0D+JohL5wzLwXiYrGa+sxoo1GWpHLjhGX/RO7V7+hj8e80yIpuIpJebJkICzww76qo7ChFViiQV4LkG6w+zt9xe6pcHb30bB3A15WdrTBNh5fOUdu8UgcI0ZPfkNra1cci7QZZVt4lz/OWf8KaUGpD4rSw38H3lXhoECH0sOs2MXh5um/3XyxoQt7IMmVhYTQrslhUTk5H1tN35HXgaI+/8fRNG/qfcJlqGKjH1HzcoxDi5bJG9jf77Xqzi2ey8GLcQzS72h2d3SxIG/Hex1mj8cItveM2EYkvtmyExYPA/HzURRQze5UuvXiDIl9PPh40CdRRMENbYYHXANrd2I77Nc9QgY5SLlw1Pmm39HbVgLhiIiROi/Oz9MvcNE3TOKzxQLFH2S4ZeHk6vfIMhOyWUzv4FuRppSosLLuwOI8wwC5NC65dabNa5SJ5Lzh4Vbpve9prd94g5tKyFJxY3JFNVzkd9zLPhG4TjmOZA/twgDtyXWWBR21njZQjwZWH1f6KqsjjInZhEa+JSGGxZSQssMD8pau3tvll6RytjejgDiSfyPXpWBDO5jJQr8wMbYUN3oP8HPsz9GpBEIu1KI4np/OPWu7T2DG86kIDOS3szM3BgEQkOjrVEFR7eoGXp79JFY9HYOiHongeZi2VlCBPK5Kw0A/7bqelKEp/OPW95mG7ZGmHwwrPZp8u99e31Tb829tP4u0jEwGvSvf2zm2XU/v5kg87sCwFKxQILYW2W5ck/vH6MabDvqIorU7Xv1rS0GtFkZcr9gJ7XDZsNCsyycB0C1eT6XjtWhSSGJseo4lIerGZkYXFdr1oKIqiNBbrYHlUWGD+bXc6m7hC9eM1QiAWWIMiarH1UuF2wCtQr8wsbQWGld5hYUXrvtq16EU9jtbmfDGdg6iXsAjktCDP3Dy/OTbL1WMCPQl4FoKnE8LoKGdfEysU9sHCaI7YdqBZi4b+J/Os/bfe6XuGfihJnFCo4qIHHxpyNYuGrpSkKC6ybMHT/j2KCfXDVrqMCSbPfDxvJBTTG4x8S+yHXz2lWvbedfAfJ8vL3r2VBh0F0ewvNjMTHxqC2yN10AnUnRffIElKG1IjAWERp4lIdLFZOCPZwap11osxZl2C9XnEP9ry79RRSsGNW67BGxTRQsljGSzVARX8O8zWVuDgG1n7e7pUB1QcTT/xvpHRk8cJ8elk5cri9HBaELbGsnGmqkbyHD460Luw7RTLyxti5/MZ52ARvxnrDvDpMtait6Ps2+VM4BhEs5/9kWGahn5QyjLF8Ou94/bwEOObWD6Zpnk6NqpFl/54JsjaRp2OWlk+/yrKSofQWOLCPyD342gutzzCmvEZ+qFWkhBCpVrTOp1YQ4pvpCce46fmm4NpmrNRl3LqD19wm5WajSAhCWERm4lIcrHZuGZIBuovgs0SQyhgKhUemK/X64hmF+uHNvAZIWwSuPlR2fMvjB6opAO60rQVvuB5ReWqwmGx1Ag4fO2p1RX66IDVaoV/Rx5OC0uCkGRuXnC4Ov1GdTwGK09HD1SkoR/a9bNFlkq1QO4pi93PBP8eAnVcwRNLLewzE+bGRKJclATugdbWZawsWy6WRZ5ledljZHDOwROsKIab34tk77fLgnCWc83uiExBGd/t6zE3KI+i767hdghzjOGGiWb5SukdPdjy8bEOLC+WizJC9HDm03jeBd4dKz9xEDMZYRGXiUhssTnot67PFwUZPmni08+tmxRK5H/rGA6OqIEabEXlH7xBkVisHu6dpWbjvpVuS7O8Slo9kbat8OXPOXq3pHSiHxvxrKzU4iAmyawQl9PiUaTD+r8kmZs2+FE+kA8AxxV1RgjJpdp0trAeiX7YjwZ90YpE0Gz3exz0UZ2O2nQ8FDj3wATlo7tYEjmpXPntFCPYShcXFtajf6S1XWaLEwqBnS55Aj95Wx+8+dlbXqLL2/Wy22lYcpEX5dmSVGXjm3cIHqbOnDS7TMDCTsC8PfE8Ouy6tCmimCHxucoC9wlzcjVXvqpkhEU8JiKhxWaz26y+uh+U8xoUw30Nx4Q973GvAwrYaQBfgYGKIJ4DZ4tkhBDLi1/D8eVwaCxmk2pRvvz0WuSHxvRthS94VxJOKt2VUEHBwyvkuVzR8RcWLqfFXZ+E/RqyzM0Lp4N0aUMTupASL0/vDia9zzbHuH7jSJDeP3tfhEVENqv5RCGg0fFt+2p0GxfTRjEj7JC6nI0v7jvEi/Lds5TF6bgviucTVanWDPpZcoajKn2+XDaqJXRDqVIbToMlyfY7DZJH9oC6R9vm5WxkL6tKo2u/Tj9si+IlhEmz3YHXT9e2ZZwgeTzrR+An77y1U1RHfUVRlFY35veNwUQktdhM0xx0WyQLa+SnIPXD1vaXcEIhkCfS3jkKleZTG4W7uBoUzcZf75LgenYUw9Wb7dUm2A8qfVvhz6UrCc0Krmh4aGx/D8UI5Nke0SFKiXA5LW7VQ9DMzesf2sloIebEmOaj8vT1cmGn2+RkC96sflRVvS0s1A97VVWJnB+GPlPVZcCk8RxyvyodG3Y1/8nXrmlx1Haqqv6sbh2txmJGOmZpvVyoF3daUGwbwcvVfCzqNIhoIp5nsZ3mqqqq86BP1koa5eVyLAfcvHG3QRE+Iy3eThJx8dhW+PydSCNEsyHcZvfB8gTSdFeYhMLCLiU927Ubp4USMHPziqGXLvWfgYq7LAKVpwM5IUBVOmBztRHU5OfpxWUAopmIl19so26D4aTnTbfyJECDohdgv54zVJxZMraPk+FlgnlYcUIqBex23XedFsEzN6/sVqplMBmhGFRzk5enA/mBvCodsLGzDXJVDJIOUUzEay+2xaRPM9yLlYHYkDcoegGO+7XIMaETie5yqTaixovI07gCQlwd6um0sP5RCZK5iWP7uwL1hzCdNdzznMx5BDwx4hyc8c9g6EWBQQi90PSHYIQzEa+92FbzEU0xk8h9DnLLC49JcqEfdgWBjXdK+99Ktdz56Q5/PxMgePHIaREycxPH0JWShBCiWTHAADesPD3NQhogCnhV+gsmsSeD1Rvj9VoUBCCUiXjhxbaajxmK6k/SGLOcFXiDolwVV8eLftgVRa5Y/Yh1CzvVCgJCSChUMskyDCAsHjktQmdu4lgdJxFCcrlB+D3gSfL/oH/4ScGr0l9sCnxCWC3eX7JFQSBCmIhXXWyL6Tf9oikjV7DEw1w1mY2Xw34t86xcVuLd/q1mzRkm3wRLt3Q1+bZcFOEzN51Ywo3c64VbDfJaYSBL8G5mNwPVgFtOR60kcQhRvXGwKOFLEsxEvMRiW0yHPEtjky+MUbeJ/oGUMvzcGKixR2457NdlWUQIdQb/Wf+y+VV5ln7U9Ss0m58pQyGGE1e7zMZIBVYD+GQyy2kRJXPTxemoWQ2SfcW4of9hDTd95iADOQFve+w7/hgw9EO1KIZopfXCkJuIF1hsf+uZbeTKje5hv7U++8urCtM027WC/fiC5t7lEay4ieYk7Xj8/mxSj3uJhma3mnMMlXkHxcDC4tZpYf1H6MxNN4beb9cRQvXOwOP7HnUb2F1wf6Ar8o+hl6XrxJVCrZ31DeWaw35TknhOkH83/2pexSNITMRLLDZ8DNsFqjN4nXnoj9A2c3zixvf06YOAzsE3l2VZqcerKn7VEUujsvKReVOTMPEL1zh1W2HEeFubH1USOLms3LZo3ax++t2Wa9BLtdHJZ6cUwDRNq/mPUpYdz4xi+sNxTtqX5Q111OcYqt7uZW4gcstjE/E6i83VMJ7hhMk8J+28kuKo7SajgYiNg0YIcWJxlpc+ZiHRd7/OhtBU83MQ43o8HbXPZo1m+cEkF96dMMLC5bSwiJK5+YDTqN/t9K/B1JsxoXd4k6tx3wYQCdfkxrvEW7397OjbRanWXG/BUeGL20S82GIz9EO9UkAI8aLc7Q+eThgF4nYu6D2o392ztgKbDDo0QohmG634j8GTQbfT7efnHBIy49LV5BtFztwEAAAAAOAFCCkISCaTAQAAAADwrxHe04A7LWLL3AQAAAAA4JkJLyxwp0W8mZsAAAAAADwpkXIjOp2ONZ1+tXrulF0AAAAAAGIBki4BAAAAAIgNEBYAAAAAAMQGCAsAAAAAAGIDhAUAAAAAALEBwgIAAAAAgNgAYQEAAAAAQGyAsAAAAAAAIDZAWAAAAAAAEBsgLAAAAAAAiA0QFgAAAAAAxMb/8ARx/BB/JuAAAAAASUVORK5CYII=" alt="" />
AC代码:
import java.awt.Point;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); boolean first=true;
while(first || reader.ready()){
first=false;
String s1=reader.readLine();
String s2=reader.readLine();
double ans=solve(s1,s2);
System.out.printf("%.2f\n",ans);
}
} public static double solve(String s1,String s2){
Point p1=compile(s1);
Point p2=compile(s2);
return Math.sqrt(Math.pow(p1.x-p2.x,2)+Math.pow(p1.y-p2.y,2));
} public static Point compile(String s){
char cs[]=s.replaceAll(" ","").toCharArray();
Point p=new Point();
for(int i=0;i<cs.length;i++){
switch(cs[i]){
case 'W':
p.x--;
break;
case 'E':
p.x++;
break;
case 'S':
p.y--;
break;
case 'N':
p.y++;
break;
}
}
return p;
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=889
NYOJ题目889求距离的更多相关文章
- NYOJ题目101两点距离
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsEAAAIBCAIAAAAnO/WXAAAgAElEQVR4nO3dq3IbSeM34L0Jc/O9BW
- NYOJ 35 表达式求值(逆波兰式求值)
http://acm.nyist.net/JudgeOnline/problemset.php?typeid=4 NYOJ 35 表达式求值(逆波兰式求值) 逆波兰式式也称后缀表达式. 一般的表达式求 ...
- 牛客网 牛客练习赛11 D.求距离
D.求距离 链接:https://www.nowcoder.com/acm/contest/59/D来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32768K,其他语言6 ...
- YTU 2705:用重载求距离
2705: 用重载求距离. 时间限制: 1 Sec 内存限制: 128 MB 提交: 208 解决: 114 题目描述 使用函数重载的方法定义两个重名函数,分别求出整型数的两点间距离和浮点型数的两 ...
- 题目:求1+2+…+n,
题目:求1+2+-+n, 要求不能使用乘除法.for.while.if.else.switch.case等关键字 以及条件判断语句(A?B:C). java 实现 public class sum { ...
- 题目:求s=a+aa+aaa+aaaa+aa...a的值,其中a是一个数字。
一.第一种写法 package com.pb.demo1; import java.util.Scanner; /** * 题目:求s=a+aa+aaa+aaaa+aa...a的值,其中a是一个数字. ...
- 给定数轴上的n个点,求距离最近的两个点的距离
public class MinimumSpacing { //给定平面上的n个点,求距离最近的两个点的距离. //无从下手的话,先分解问题,分解成简单的,逐个分析,然后再合在一起考虑 //这是个2维 ...
- 2019-8-31-C#-已知点和向量,求距离的点
title author date CreateTime categories C# 已知点和向量,求距离的点 lindexi 2019-08-31 16:55:58 +0800 2018-05-08 ...
- NYOJ 1272 表达式求值 第九届省赛 (字符串处理)
title: 表达式求值 第九届省赛 nyoj 1272 tags: [栈,数据结构] 题目链接 描述 假设表达式定义为: 1. 一个十进制的正整数 X 是一个表达式. 2. 如果 X 和 Y 是 表 ...
随机推荐
- sass跨文件重写变量
利用变量默认值: !default 你可以在变量尚未赋值前,通过在值的末尾处添加 !default 标记来为其指定. 也就是说,如果该变量已经被赋值, 就不会再次赋值, 但是,如果还没有被赋值,就会被 ...
- 关于CSS中对IE条件注释的问题
一.通用区分方式:IE6.IE7能识别*,标准浏览器(如FF)不能识别*:IE6能识别*,但不能识别 !important:IE7能识别*,也能识别 !important:IE8能识别\0,不能识别* ...
- Android常用的工具类
主要介绍总结的Android开发中常用的工具类,大部分同样适用于Java.目前包括HttpUtils.DownloadManagerPro.ShellUtils.PackageUtils. Prefe ...
- 在c或c+程序里打印调用栈。转
在C/C++程序里打印调用栈信息 我们知道,GDB的backtrace命令可以查看堆栈信息.但很多时候,GDB根本用不上.比如说,在线上环境中可能没有GDB,即使有,也不太可能让我们直接在上面调试.如 ...
- java中的jComBox的基本用法
jComBox获取选中的字符串 getSelectedItem().toString()返回一个字符串 getSelectedItem()返回一个对象. getSelectedIndex()得到选择值 ...
- C语言的执行
在ANSIC 的任何一种实现中,有两种不同的环境 翻译环境:将源代码转换为可执行的机器代码 执行环境:用于执行代码 这两种环境可以运行于同一个机器上,也可以运行于不同的机器上 例如交叉编译器:在一台机 ...
- PHP MVC 中的MODEL层
Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...
- Dom初
DOM基础 •什么是DOM •浏览器支持情况 lDOM节点 •childNodes nodeType –获取子节点 <!DOCTYPE html PUBLIC "-//W3C//DT ...
- 【GoLang】golang 交叉编译 实现&工具
apt-get install gcc-mingw-w64 env CGO_ENABLED= GOOS=windows GOARCH=amd64 CC=x86_64-w64-mingw32-gcc g ...
- .net MVC借助Iframe实现无刷新上传文件
html: <div id="uploadwindow" style="display: none;"> <form action=" ...