How to choose the number of topics/partitions in a Kafka cluster?
This is a common question asked by many Kafka users. The goal of this post is to explain a few important determining factors and provide a few simple formulas.
More Partitions Lead to Higher Throughput
The first thing to understand is that a topic partition is the unit of parallelism in Kafka. On both the producer and the broker side, writes to different partitions can be done fully in parallel. So expensive operations such as compression can utilize more hardware resources. On the consumer side, Kafka always gives a single partition’s data to one consumer thread. Thus, the degree of parallelism in the consumer (within a consumer group) is bounded by the number of partitions being consumed. Therefore, in general, the more partitions there are in a Kafka cluster, the higher the throughput one can achieve.
A rough formula for picking the number of partitions is based on throughput. You measure the throughout that you can achieve on a single partition for production (call it p) and consumption (call it c). Let’s say your target throughput is t. Then you need to have at least max(t/p, t/c)partitions. The per-partition throughput that one can achieve on the producer depends on configurations such as the batching size, compression codec, type of acknowledgement, replication factor, etc. However, in general, one can produce at 10s of MB/sec on just a single partition as shown in this benchmark. The consumer throughput is often application dependent since it corresponds to how fast the consumer logic can process each message. So, you really need to measure it.
Although it’s possible to increase the number of partitions over time, one has to be careful if messages are produced with keys. When publishing a keyed message, Kafka deterministically maps the message to a partition based on the hash of the key. This provides a guarantee that messages with the same key are always routed to the same partition. This guarantee can be important for certain applications since messages within a partition are always delivered in order to the consumer. If the number of partitions changes, such a guarantee may no longer hold. To avoid this situation, a common practice is to over-partition a bit. Basically, you determine the number of partitions based on a future target throughput, say for one or two years later. Initially, you can just have a small Kafka cluster based on your current throughput. Over time, you can add more brokers to the cluster and proportionally move a subset of the existing partitions to the new brokers (which can be done online). This way, you can keep up with the throughput growth without breaking the semantics in the application when keys are used.
In addition to throughput, there are a few other factors that are worth considering when choosing the number of partitions. As you will see, in some cases, having too many partitions may also have negative impact.
More Partitions Requires More Open File Handles
Each partition maps to a directory in the file system in the broker. Within that log directory, there will be two files (one for the index and another for the actual data) per log segment. Currently, in Kafka, each broker opens a file handle of both the index and the data file of every log segment. So, the more partitions, the higher that one needs to configure the open file handle limit in the underlying operating system. This is mostly just a configuration issue. We have seen production Kafka clusters running with more than 30 thousand open file handles per broker.
More Partitions May Increase Unavailability
Kafka supports intra-cluster replication, which provides higher availability and durability. A partition can have multiple replicas, each stored on a different broker. One of the replicas is designated as the leader and the rest of the replicas are followers. Internally, Kafka manages all those replicas automatically and makes sure that they are kept in sync. Both the producer and the consumer requests to a partition are served on the leader replica. When a broker fails, partitions with a leader on that broker become temporarily unavailable. Kafka will automatically move the leader of those unavailable partitions to some other replicas to continue serving the client requests. This process is done by one of the Kafka brokers designated as the controller. It involves reading and writing some metadata for each affected partition in ZooKeeper. Currently, operations to ZooKeeper are done serially in the controller.
In the common case when a broker is shut down cleanly, the controller will proactively move the leaders off the shutting down broker one at a time. The moving of a single leader takes only a few milliseconds. So, from the clients perspective, there is only a small window of unavailability during a clean broker shutdown.
However, when a broker is shut down uncleanly (e.g., kill -9), the observed unavailability could be proportional to the number of partitions. Suppose that a broker has a total of 2000 partitions, each with 2 replicas. Roughly, this broker will be the leader for about 1000 partitions. When this broker fails uncleanly, all those 1000 partitions become unavailable at exactly the same time. Suppose that it takes 5 ms to elect a new leader for a single partition. It will take up to 5 seconds to elect the new leader for all 1000 partitions. So, for some partitions, their observed unavailability can be 5 seconds plus the time taken to detect the failure.
If one is unlucky, the failed broker may be the controller. In this case, the process of electing the new leaders won’t start until the controller fails over to a new broker. The controller failover happens automatically, but requires the new controller to read some metadata for every partition from ZooKeeper during initialization. For example, if there are 10,000 partitions in the Kafka cluster and initializing the metadata from ZooKeeper takes 2 ms per partition, this can add 20 more seconds to the unavailability window.
In general, unclean failures are rare. However, if one cares about availability in those rare cases, it’s probably better to limit the number of partitions per broker to two to four thousand and the total number of partitions in the cluster to low tens of thousand.
More Partitions May Increase End-to-end Latency
The end-to-end latency in Kafka is defined by the time from when a message is published by the producer to when the message is read by the consumer. Kafka only exposes a message to a consumer after it has been committed, i.e., when the message is replicated to all the in-sync replicas. So, the time to commit a message can be a significant portion of the end-to-end latency. By default, a Kafka broker only uses a single thread to replicate data from another broker, for all partitions that share replicas between the two brokers. Our experiments show that replicating 1000 partitions from one broker to another can add about 20 ms latency, which implies that the end-to-end latency is at least 20 ms. This can be too high for some real-time applications.
Note that this issue is alleviated on a larger cluster. For example, suppose that there are 1000 partition leaders on a broker and there are 10 other brokers in the same Kafka cluster. Each of the remaining 10 brokers only needs to fetch 100 partitions from the first broker on average. Therefore, the added latency due to committing a message will be just a few ms, instead of tens of ms.
As a rule of thumb, if you care about latency, it’s probably a good idea to limit the number of partitions per broker to 100 x b x r, where b is the number of brokers in a Kafka cluster and r is the replication factor.
More Partitions May Require More Memory In the Client
In the most recent 0.8.2 release which we ship with the Confluent Platform 1.0, we have developed a more efficient Java producer. One of the nice features of the new producer is that it allows users to set an upper bound on the amount of memory used for buffering incoming messages. Internally, the producer buffers messages per partition. After enough data has been accumulated or enough time has passed, the accumulated messages are removed from the buffer and sent to the broker.
If one increases the number of partitions, message will be accumulated in more partitions in the producer. The aggregate amount of memory used may now exceed the configured memory limit. When this happens, the producer has to either block or drop any new message, neither of which is ideal. To prevent this from happening, one will need to reconfigure the producer with a larger memory size.
As a rule of thumb, to achieve good throughput, one should allocate at least a few tens of KB per partition being produced in the producer and adjust the total amount of memory if the number of partitions increases significantly.
A similar issue exists in the consumer as well. The consumer fetches a batch of messages per partition. The more partitions that a consumer consumes, the more memory it needs. However, this is typically only an issue for consumers that are not real time.
Summary
In general, more partitions in a Kafka cluster leads to higher throughput. However, one does have to be aware of the potential impact of having too many partitions in total or per broker on things like availability and latency. In the future, we do plan to improve some of those limitations to make Kafka more scalable in terms of the number of partitions.
这是许多kafka使用者经常会问到的一个问题。本文的目的是介绍与本问题相关的一些重要决 策因素,并提供一些简单的计算公式。
越多的分区可以提供更高的吞吐量
首先我们需要明白以下事实:在kafka中,单个patition是kafka并行操作的最小单元。在prod ucer和broker端,向每一个分区写入数据是可以完全并行化的,此时,可以通过加大硬件资源的 利用率来提升系统的吞吐量,例如对数据进行压缩。在consumer段,kafka只允许单个partition
的数据被一个consumer线程消费。因此,在consumer端,每一个Consumer Group内部的consu mer并行度完全依赖于被消费的分区数量。综上所述,通常情况下,在一个Kafka集群中,partiti on的数量越多,意味着可以到达的吞吐量越大。
我们可以粗略地通过吞吐量来计算kafka集群的分区数量。假设对于单个partition,producer 端的可达吞吐量为p,Consumer端的可达吞吐量为c,期望的目标吞吐量为t,那么集群所需要的 partition数量至少为max(t/p,t/c)。在producer端,单个分区的吞吐量大小会受到批量大小、数据 压缩方法、 确认类型(同步/异步)、复制因子等配置参数的影响。经过测试,在producer端, 单个partition的吞吐量通常是在10MB/s左右。在consumer端,单个partition的吞吐量依赖于con sumer端每个消息的应用逻辑处理速度。因此,我们需要对consumer端的吞吐量进行测量。
虽然随着时间的推移,我们能够对分区的数量进行添加,但是对于基于Key来生成的这一类 消息需要我们重点关注。当producer向kafka写入基于key的消息时,kafka通过key的hash值来确 定消息需要写入哪个具体的分区。通过这样的方案,kafka能够确保相同key值的数据可以写入同 一个partition。kafka的这一能力对于一部分应用是极为重要的,例如对于同一个key的所有消息 ,consumer需要按消息的顺序进行有序消费。如果partition的数量发生改变,那么上面的有序性 保证将不复存在。为了避免上述情况发生,通常的解决办法是多分配一些分区,以满足未来的需 求。通常情况下,我们需要根据未来1到2年的目标吞吐量来设计kafka的分区数量。
一开始,我们可以基于当前的业务吞吐量为kafka集群分配较小的broker数量,随着时间的推 移,我们可以向集群中增加更多的broker,然后在线方式将适当比例的partition转移到新增加的b roker中去。通过这样的方法,我们可以在满足各种应用场景(包括基于key消息的场景)的情况 下,保持业务吞吐量的扩展性。
在设计分区数时,除了吞吐量,还有一些其他因素值得考虑。正如我们后面即将看到的,对 于一些应用场景,集群拥有过的分区将会带来负面的影响。
越多的分区需要打开更多地文件句柄
在kafka的broker中,每个分区都会对照着文件系统的一个目录。在kafka的数据日志文件目 录中,每个日志数据段都会分配两个文件,一个索引文件和一个数据文件。当前版本的kafka,每 个broker会为每个日志段文件打开一个index文件句柄和一个数据文件句柄。因此,随着partition 的增多,需要底层操作系统配置更高的文件句柄数量限制。这更多的是一个配置问题。我们曾经见到过,在生产环境Kafka集群中,每个broker打开的文件句柄数量超过30,000。
更多地分区会导致更高的不可用性
Kafka通过多副本复制技术,实现kafka集群的高可用和稳定性。每个partition都会有多个数 据副本,每个副本分别存在于不同的broker。所有的数据副本中,有一个数据副本为Leader,其 他的数据副本为follower。在kafka集群内部,所有的数据副本皆采用自动化的方式进行管理,并 且确保所有的数据副本的数据皆保持同步状态。不论是producer端还是consumer端发往partition 的请求,皆通过leader数据副本所在的broker进行处理。当broker发生故障时,对于leader数据 副本在该broker的所有partition将会变得暂时不可用。Kafka将会自动在其他数据副本中选择出一 个leader,用于接收客户端的请求。这个过程由kafka controller节点broker自动完成,主要是从Z ookeeper读取和修改受影响partition的一些元数据信息。在当前的kafka版本实现中,对于zooke eper的所有操作都是由kafka controller来完成的(serially的方式)。
在通常情况下,当一个broker有计划地停止服务时,那么controller会在服务停止之前,将该 broker上的所有leader一个个地移走。由于单个leader的移动时间大约只需要花费几毫秒,因此 从客户层面看,有计划的服务停机只会导致系统在很小时间窗口中不可用。(注:在有计划地停 机时,系统每一个时间窗口只会转移一个leader,其他leader皆处于可用状态。)
然而,当broker非计划地停止服务时(例如,kill -9方式),系统的不可用时间窗口将会与受 影响的partition数量有关。假如,一个2节点的kafka集群中存在2000个partition,每个partition
拥有2个数据副本。当其中一个broker非计划地宕机,所有1000个partition同时变得不可用。假 设每一个partition恢复时间是5ms,那么1000个partition的恢复时间将会花费5秒钟。因此,在这 种情况下,用户将会观察到系统存在5秒钟的不可用时间窗口。
更不幸的情况发生在宕机的broker恰好是controller节点时。在这种情况下,新leader节点的 选举过程在controller节点恢复到新的broker之前不会启动。Controller节点的错误恢复将会自动 地进行,但是新的controller节点需要从zookeeper中读取每一个partition的元数据信息用于初始 化数据。例如,假设一个kafka集群存在10,000个partition,从zookeeper中恢复元数据时每个par tition大约花费2ms,则controller的恢复将会增加约20秒的不可用时间窗口。
通常情况下,非计划的宕机事件发生的情况是很少的。如果系统可用性无法容忍这些少数情 况的场景,我们最好是将每个broker的partition数量限制在2,000到4,000,每个kafka集群中parti tion的数量限制在10,000以内。
越多的分区可能增加端对端的延迟
Kafka端对端延迟定义为producer端发布消息到consumer端接收消息所需要的时间。即cons umer接收消息的时间减去producer发布消息的时间。Kafka只有在消息提交之后,才会将消息暴 露给消费者。例如,消息在所有in-sync副本列表同步复制完成之后才暴露。因此,in-sync副本复 制所花时间将是kafka端对端延迟的最主要部分。在默认情况下,每个broker从其他broker节点进 行数据副本复制时,该broker节点只会为此工作分配一个线程,该线程需要完成该broker所有par tition数据的复制。经验显示,将1000个partition从一个broker到另一个broker所带来的时间延迟 约为20ms,这意味着端对端的延迟至少是20ms。这样的延迟对于一些实时应用需求来说显得过 长。
注意,上述问题可以通过增大kafka集群来进行缓解。例如,将1000个分区leader放到一个br oker节点和放到10个broker节点,他们之间的延迟是存在差异的。在10个broker节点的集群中, 每个broker节点平均需要处理100个分区的数据复制。此时,端对端的延迟将会从原来的数十毫 秒变为仅仅需要几毫秒。
根据经验,如果你十分关心消息延迟问题,限制每个broker节点的partition数量是一个很好 的主意:对于b各broker节点和复制因子为r的kafka集群,整个kafka集群的partition数量最好不 超过100*b*r个,即单个partition的leader数量不超过100.
越多的partition意味着需要客户端需要更多的内存
在最新发布的0.8.2版本的kafka中,我们开发了一个更加高效的Java producer。新版produc er拥有一个比较好的特征,他允许用户为待接入消息存储空间设置内存大小上限。在内部实现层 面,producer按照每一个partition来缓存消息。在数据积累到一定大小或者足够的时间时,积累 的消息将会从缓存中移除并发往broker节点。
如果partition的数量增加,消息将会在producer端按更多的partition进行积累。众多的partit ion所消耗的内存汇集起来,有可能会超过设置的内容大小限制。当这种情况发生时,producer 必须通过消息堵塞或者丢失一些新消息的方式解决上述问题,但是这两种做法都不理想。为了避 免这种情况发生,我们必须重新将produder的内存设置得更大一些。
根据经验,为了达到较好的吞吐量,我们必须在producer端为每个分区分配至少几十KB的内 存,并且在分区数量显著增加时调整可以使用的内存数量。
类似的事情对于consumer端依然有效。Consumer端每次从kafka按每个分区取出一批消息 进行消费。消费的分区数越多,需要的内存数量越大。尽管如此,上述方式主要运用于非实时的 应用场景。
总结
通常情况下,kafka集群中越多的partition会带来越高的吞吐量。但是,我们必须意识到集群 的partition总量过大或者单个broker节点partition过多,都会对系统的可用性和消息延迟带来潜 在的影响。未来,我们计划对这些限制进行一些改进,让kafka在分区数量方面变得更加可扩展。
英文原文:http://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/
How to choose the number of topics/partitions in a Kafka cluster?的更多相关文章
- How to choose the number oftopics/partitions in a Kafka cluster?
How to choose the number oftopics/partitions in a Kafka cluster? 如何为一个kafka集群选择topics/partitions的数量? ...
- Number of dynamic partitions exceeded hive.exec.max.dynamic.partitions.pernode
动态分区数太大的问题:[Fatal Error] Operator FS_2 (id=2): Number of dynamic partitions exceeded hive.exec.max.d ...
- kafka性能参数和压力测试揭秘
转自:http://blog.csdn.net/stark_summer/article/details/50203133 上一篇文章介绍了Kafka在设计上是如何来保证高时效.大吞吐量的,主要的内容 ...
- kafka topic制定规则
kafka topic的制定,我们要考虑的问题有很多,比如生产环境中用几备份.partition数目多少合适.用几台机器支撑数据量,这些方面如何去考量?笔者根据实际的维护经验,写一些思考,希望大家指正 ...
- Running Kafka At Scale
https://engineering.linkedin.com/kafka/running-kafka-scale If data is the lifeblood of high technolo ...
- Study notes for Latent Dirichlet Allocation
1. Topic Models Topic models are based upon the idea that documents are mixtures of topics, where a ...
- Kafka Frequently Asked Questions
This is intended to be an easy to understand FAQ on the topic of Kafka. One part is for beginners, o ...
- Go 语言相关的优秀框架,库及软件列表
If you see a package or project here that is no longer maintained or is not a good fit, please submi ...
- Awesome Go精选的Go框架,库和软件的精选清单.A curated list of awesome Go frameworks, libraries and software
Awesome Go financial support to Awesome Go A curated list of awesome Go frameworks, libraries a ...
随机推荐
- ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)
这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...
- 常用js学习
http://www.cnblogs.com/qiantuwuliang/tag/js/
- mybatis一对多查询
18 <!-- 19 方式一:嵌套结果:使用嵌套结果映射来处理重复的联合结果的子集 20 封装联表查询的数据(去除重复的数据) 21 select * from class c, teacher ...
- js控制表格单双行颜色交替显示
<script language="JavaScript"> window.onload = function() { var Table=document.getEl ...
- 129. Sum Root to Leaf Numbers
题目: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a nu ...
- Hyper snap
图像->分辨率,设置成300dpi,一般论文的分辨率要求.
- shell之数值运算
Shell中声明变量默认是字符串, 要参与数值运算,可使用下面方式,简单,表示以数值方式.
- 用Mysqlbinlog备份BinLog文件
默认情况下, mysqlbinlog读取二进制文件[BinLog]并以文本的方式呈现[text format].mysqlbinlog可以直接地从本地读取Log,也可以读取远程的Log[--read- ...
- 创建DLL、Lib以及使用DLL、Lib
1.要在生成DLL文件的同时生成Lib文件,函数声明时前面要加__declspec(dllexport). 可在头文件中如下定义: #ifndef __MYDLL_H#define __MYDLL_H ...
- android中一个解决办法
E Trace(732): error opening trace file: No such file or directory (2)android api 的版本和模拟器的版本不一致导致的