题意:求不同回文串的个数 n<=10^5

题解:

先按照manacher的构造方法改造一遍串,然后跑一遍manacher。

如ababa--> $#a#b#a#b#a#@

然后跑一遍后缀数组。

对于一个后缀sa[i]~cl(cl为字符串的总长),我们本来是要加上以sa[i]为中心的回文串的个数p[sa[i]]。

但是这可能有重复!

我们可以维护一个tmp,也就是上图中蓝色的框。tmp表示以字符sa[i-1]为中心已经被统计过的回文串的个数。

到了当前的sa[i],tmp=min(tmp,h[i]);

每次如果p[x]<=tmp,就continue;

否则,ans+=(p[x]-tmp)/2;(/2是因为有#)

按照最上面的构造方法,每个最长回文串p[i]必定以#开头和结尾,所以可以直接除以2,可以画个图看看。

一开始以为z的ascll码<=100,get_sa()那里参数小了。。TLE了好几遍才发现。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; const int N=;
int cl,sl,p[N],rk[N],Rs[N],sa[N],wr[N],y[N],h[N];
char c[N],s[N]; int minn(int x,int y){return x<y ? x:y;}
int maxx(int x,int y){return x>y ? x:y;} void get_sa(int m)
{
for(int i=;i<=cl;i++) rk[i]=c[i];
for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[rk[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[rk[i]]--]=i; int ln=,p=;
while(p<cl)
{
int k=;
for(int i=cl-ln+;i<=cl;i++) y[++k]=i;
for(int i=;i<=cl;i++) if(sa[i]>ln) y[++k]=sa[i]-ln; for(int i=;i<=cl;i++) wr[i]=rk[y[i]];
for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[wr[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[wr[i]]--]=y[i]; for(int i=;i<=cl;i++) wr[i]=rk[i];
for(int i=cl+;i<=cl+ln;i++) wr[i]=;
p=;rk[sa[]]=;
for(int i=;i<=cl;i++)
{
if(wr[sa[i]]!=wr[sa[i-]] || wr[sa[i]+ln]!=wr[sa[i-]+ln]) p++;
rk[sa[i]]=p;
}
ln*=,m=p;
}
sa[]=;rk[]=;
} void get_h()
{
int k=,j;
for(int i=;i<=cl;i++) if(rk[i]!=)
{
j=sa[rk[i]-];
if(k) k--;
while(c[i+k]==c[j+k] && i+k<=cl && j+k<=cl) k++;
h[rk[i]]=k;
}
h[]=;
} void manacher()
{
int id=,mx=;
p[]=;
for(int i=;i<=cl;i++)
{
if(i+p[*id-i]- < mx) p[i]=p[*id-i];
else
{
p[i]=maxx(,mx-i+);
while(c[i+p[i]]==c[i-p[i]] && i+p[i]<=cl && i-p[i]>=) p[i]++;
if(i+p[i]->mx) mx=i+p[i]-,id=i;
}
}
} void solve()
{
int x,tmp=,ans=;
for(int i=;i<=cl;i++)
{
x=sa[i];
tmp=minn(tmp,h[i]);
if(p[x]<=tmp) continue;
ans+=(p[x]-tmp)/;
tmp=p[x];
}
printf("%d\n",ans);
} int main()
{
freopen("a.in","r",stdin);
// freopen("me.out","w",stdout);
int T;
scanf("%d",&T);
for(int TT=;TT<=T;TT++)
{
scanf("%s",s+);
sl=strlen(s+);
cl=;
c[++cl]='$';
int i;
for(i=;i<=sl;i++)
c[++cl]='#',c[++cl]=s[i];
c[++cl]='#';c[++cl]='@';
// for(int i=1;i<=cl;i++) printf("%c",c[i]);printf("\n");
// for(int i=1;i<=cl;i++) printf("%d ",p[i]);printf("\n");
manacher();
get_sa();
get_h();
printf("Case #%d: ",TT);
solve();
}
return ;
}

【hdu3948-不同回文串的个数】后缀数组的更多相关文章

  1. [APIO2014] [Uoj103] [Bzoj3676] Palindromes回文串 [Manacher,后缀数组]

    用Manacher算法枚举回文子串,每次在后缀数组排序后的后缀数组中二分,因为用某一后缀和其他子串分别求匹配的长度,匹配长度在排序后该后缀的两侧具有单调性(匹配长度为min{H[x]|i<=x& ...

  2. 2021.12.10 P5041 [HAOI2009]求回文串(树状数组求逆序对)

    2021.12.10 P5041 [HAOI2009]求回文串(树状数组求逆序对) https://www.luogu.com.cn/problem/P5041 题意: 给一个字符串 \(S\) ,每 ...

  3. APIO 2014 回文串(Manacher+后缀自动机+倍增)

    题意 https://www.lydsy.com/JudgeOnline/problem.php?id=3676 思路 好像还是回文自动机裸体,但是 \(\text{Manacher}\) +后缀自动 ...

  4. WHU 583 Palindrome ( 回文自动机 && 本质不同的回文串的个数 )

    题目链接 题意 : 给你一个串.要你将其划分成两个串.使得左边的串的本质不同回文子串的个数是右边串的两倍.对于每一个这样子的划分.其对答案的贡献就是左边串的长度.现在要你找出所有这样子的划分.并将贡献 ...

  5. BZOJ3676 APIO2014回文串(manacher+后缀自动机)

    由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...

  6. 回文树(统计所有回文串的个数) - MCCME 1750 Подпалиндромы

    Подпалиндромы Problem's Link: http://informatics.mccme.ru//mod/statements/view.php?chapterid=1750# M ...

  7. 【bzoj2565】最长双回文串 Manacher+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6802558.html 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc ...

  8. BZOJ 3676 回文串

    Description 考虑一个只包含小写拉丁字母的字符串\(s\).我们定义\(s\)的一个子串\(t\)的"出现值"为\(t\)在\(s\)中的出现次数乘以\(t\)的长度.请 ...

  9. 【回文串-Manacher】

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 转:http://blog.sina.com.c ...

随机推荐

  1. C#关于new的用法

    1.运算符就是在实例化一个类的时候(运算符的用法) A a=new A(); 2.new 约束指定泛型类声明中的任何类型参数都必须有公共无参数构造函数.当泛型类创建类型的新实例时,将此约束应用于类型参 ...

  2. IIS6与IIS7中如何设置文件过期

    在IIS6中:一. 打开IIS管理器 二. 选中要设置的网站单击属性,打开站点属性菜单 三. 单击HTTP头选项卡 四. 单击 启用内容过期 如:设置30分钟后过期,此时间段后过期项中填30,单位选择 ...

  3. 已有a,b两个链表,每个链表中的结点包括学号,成绩。要求把两个链表合并。按学号升序排列.

    #include <stdio.h>#define SIZE sizeof(struct student)struct student{       long num;       flo ...

  4. IE11 的区别

    http://msdn.microsoft.com/zh-tw/visualc/bg182625

  5. android的JNI 、 NDK 学习!

    转载的! Java Native Interface (JNI)标准是java平台的一部分,它允许Java代码和其他语言写的代码进行交互.JNI 是本地编程接口,它使得在 Java 虚拟机 (VM) ...

  6. C#学习笔记-----C#枚举中的位运算权限分配

    一.基础知识 什么是位运算? 用二进制来计算,1&2:这就是位运算,其实它是将0001与0010做位预算   得到的结果是 0011,也就是3  2.位预算有多少种?(我们就将几种我们权限中会 ...

  7. 数据结构和算法 – 5.模式匹配和文本处理

    了使用正则表达式,需要把 RegEx 类引入程序.大家可以在 System.Text.RegularExpression 名字域中找到这种类.一旦把这种类导入了程序,就需要决定想要用 RegEx 类来 ...

  8. CSS3学习

    1.CSS3边框 border-radius:创建圆角边框 border-radius:25px; -moz-border-radius:25px; /* 老的 Firefox */ box-shad ...

  9. Python 入门简介(一)

    Why Python? 我个人认为去学习一门新的语言其实是不需要理由的,当然如果你硬要我编个理由的话还是很容易的. 容易学 容易用 有人真的在用Python么? 这个问题谁用谁知道. 选择什么开发工具 ...

  10. JavaScript - Html 中使用JavaScript

    把JavaScript插入到HTML页面要使用<script>元素.使用这个元素可以把JavaScript嵌入到HTML页面中,让脚本与标记混合在一起:也可以包含外部的JavaScript ...