Codeforces 711E ZS and The Birthday Paradox
传送门
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of $23$ people, there is around $50%$ chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are $2^n$ days in a year. ZS the Coder wants to interview $k$ people from Udayland, each of them has birthday in one of $2^n$ days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction $\dfrac{A}{B}$. He wants to find the values of $A$ and $B$ (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers $n$ and $k$ ($1 \le n \le 10^18, 2 \le k \le 10^18$), meaning that there are $2^n$ days in a year and that ZS the Coder wants to interview exactly $k$ people.
Output
If the probability of at least two $k$ people having the same birthday in $2^n$ days long year equals ($A \ge 0, B \ge 1, \gcd(A,B)=1$), print the $A$ and $B$ in a single line.
Since these numbers may be too large, print them modulo $10^6 + 3$. Note that $A$ and $B$ must be coprime before their remainders modulo $10^6 + 3$ are taken.
Examples
Input
3 2
Output
1 8
Input
1 3
Output
1 1
Input
4 3
Output
23 128
Note
In the first sample case, there are $2^3 = 8$ days in Udayland. The probability that $2$ people have the same birthday among $2$ people is clearly $\frac{1}{8}$ , so $A = 1, B = 8$.
In the second sample case, there are only $2^1 = 2$ days in Udayland, but there are $3$ people, so it is guaranteed that two of them have the same birthday. Thus, the probability is $1$ and $A = B = 1$.
Solution
首先注意到$10^6+3$是个素数.
不难想到求任意两人生日都不冲突的概率更为简单, 答案是$\dfrac{A_{2n}{k}}{2^{nk}}$, 展开化简得
$$ \frac{(2n-1)(2n-2)\cdots(2n-(k-1))}{2{n(k-1)}} $$
这里我们需要注意:
$$\dfrac{a}{b}既约\Longleftrightarrow \dfrac{a}{b-a}既约,\ (b>a)$$
因为$\gcd(a, b)=\gcd(a, b-a)$.
接着要对此式进行约分, 也就是求分子的素因子分解形式中2的幂次. 这里有个key observation:
$$2^n-x中2的幂次和x中2的幂次相同.$$
所以问题转化成求$(k-1)!$中所包含的2的幂次.
而$n!$中包含的素数$p$的幂次, 记作$\nu_p(n!)$, 为:
$$\nu_p(n!)=\sum_{i\ge 1}[\frac{n}{p^i}]$$
上式也称作Legendre's formula.
注意: 如果$p$不是素数, 这个结论是不成立的.
Implementation
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
// return the max k s.t. p^k | n!
LL get_exponent(LL n, int p){
LL res=0;
for(LL x=p; n>=x; res+=n/x, x*=p);
return res;
}
LL Pow(LL x, LL n, int p){
LL res=1;
for(; n; x*=x, x%=p, n>>=1)
if(n&1) res*=x, res%=p;
return res;
}
// return 2^{(k-1)*n}
LL calc2(LL n, LL k, int p){
return Pow(Pow(2, k-1, p), n, p);
}
// x cannot be divided by p
LL inv(LL x, int p){
return Pow(x, p-2, p);
}
// A(n, k)%p, p is small
// n>=k
LL calc3(LL n, LL k, int p){
if(k>=p) return 0;
LL res=1;
for(; k; ){
res*=n, res%=p;
if(n==0) break;
--k, --n;
}
return res;
}
int main(){
LL n, k;
cin>>n>>k;
int p=1000003;
if(log2(k)>n){
puts("1 1");
}
else{
LL cnt=get_exponent(k-1, 2); //error-prone
LL x=Pow(2, cnt, p);
LL y=(Pow(2, n, p)+p-1)%p;
LL t=inv(x, p);
LL num=calc3(y, k-1, p)*t%p;
LL den=calc2(n, k, p)*t%p;
num=(den-num+p)%p; //error-prone
cout<<num<<' '<<den<<endl;
}
}
Pitfalls
最近写代码总是犯各种各样的傻逼错误. 比如这次我把函数calc2()
中的return Pow(Pow(2, k-1, p), n, p);
写成了Pow(Pow(2, k-1, p), n, p);
. 这样在本地竟然把3个样例都过了. 然后交上去竟然WA on T1.
历尽千辛万苦才找到bug. 我的编译器(g++ 5.4.0)没报错, 可能是自动识别了这个错误. 避免这个问题的方法是编译时加上-Wall
选项.
g++ main.cpp -o main -Wall -std=c++14 && ./main <in
Codeforces 711E ZS and The Birthday Paradox的更多相关文章
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces 711E ZS and The Birthday Paradox(乘法逆元)
[题目链接] http://codeforces.com/problemset/problem/711/E [题目大意] 假设一年有2^n天,问k个小朋友中有两个小朋友生日相同的概率. 假设该概率约分 ...
- codeforces 711E. ZS and The Birthday Paradox 概率
已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- CF369E. ZS and The Birthday Paradox
/* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...
- 【Codeforces711E】ZS and The Birthday Paradox [数论]
ZS and The Birthday Paradox Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample ...
- 【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- centos6-honeyd安装&配置
安装 需要装 libpcap libevent libdnet 等(!) 有些用的yum,有些下载的安装包手动安装 (wget tar configure make install 非常linux) ...
- SQL基础之select
1.认识select select的主要语法如下,这个很重要因为只有记住了整体的结构才能应对任何情况.从中可以看到select的强大主要就是建立在where.group by.having.order ...
- 前端Mvvm QC 上传了测试版
QC是一个前端MVVM框架,适合用来构建复杂的业务逻辑 项目地址:https://github.com/time-go/qc 技术支持QQ群:330603020 QC特点: 1.良好的浏览器兼容性(兼 ...
- PHP 页面跳转方法
1.php header()函数跳转 PHP的header()函数非常强大,其中在页面url跳转方面也调用简单,使用header()直接跳转到指定url页面,这时页面跳转是302重定向: $url = ...
- nios II--实验6——串口软件部分
软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...
- JavaScript学习笔记-选择器集合调用方法
<script type="text/javascript"> function uu(namePd) { //判断id var reId = new RegExp(/ ...
- 检测IE浏览器方法
var isIE=function(){ var b=document.createElement("b"); b.innerHTML="<!--[if IE]&g ...
- Sublime Text 必备插件
收集网址:http://segmentfault.com/a/1190000002748032
- Beta版冲刺Day1
会议讨论: 628: 已经成功实现了文件的上传功能,但是按钮的布局有点不好看.未完成的功能有:修改老师信息时候弹出小窗口进行修改. 601: 目前还在解决剩下的问题,比如将 ...
- 1025WHERE执行顺序以及MySQL查询优化器
转自http://blog.csdn.net/zhanyan_x/article/details/25294539 -- WHERE执行顺序-- 过滤比较多的放在前面,然后更加容易匹配,从左到右进行执 ...