“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第7章课程讲义下载(PDF)

Summary

  • For a nonsingular matrix $[A]$ on which one can always write it as $$[A] = [L][U]$$ where $[L]$ is a lower triangular matrix, $[U]$ is a upper triangular matrix.
  • Note that not all matrices have LU decomposition, such as $\begin{bmatrix}0& 2\\ 2& 0\end{bmatrix}$. $$\begin{bmatrix}0& 2\\ 2& 0\end{bmatrix}=\begin{bmatrix}1& 0\\ a& 1\end{bmatrix} \begin{bmatrix}b& c\\ 0& d\end{bmatrix} \Rightarrow \begin{cases} b=0\\ ab=2\end{cases}$$ which is contradiction.
  • If one is solving a set of equations $$[A][X]=[B]$$ then $$LUX=B$$ $$\Rightarrow L^{-1}LUX=L^{-1}B$$ $$\Rightarrow UX=L^{-1}B=Y$$ then we have $$\begin{cases}LY=B\\ UX=Y\end{cases}$$ So we can solve the first equation for $[Y]$by using forward substitution and then use the second equation to calculate the solution vector $[X]$ by back substitution.
  • For instance, solve the following set of equations: $$\begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 14\\ -8\\ 17\end{bmatrix}$$ Applying LU decomposition on the coefficient matrix,
    • Firstly write down an identity matrix (the same size as the coefficient matrix) on the left and the coefficient matrix on the right. $$L\leftarrow\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}\rightarrow U$$
    • Then applying elementary row operation on the right while simultaneously updating successive columns of the matrix on the left. For example, if we are doing $R_1 + m R_2$ on the right then we will do $C_2-mC_1$ on the left. That is, we will keep the equivalent of the product. $$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_2-2R_1 \\ C_1+2C_2\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 1& 5& 2\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_1 \\ C_1+C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 3& -1\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3+R_2 \\ C_2-C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& -1& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 0& -11\end{bmatrix}$$ Thus far, the right matrix is an upper triangular matrix (i.e. $U$) and the left one is a lower triangular matrix (i.e. $L$).
    • Solving $[L][Y]=[B]$, that is $$\begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& -1& 1 \end{bmatrix}\cdot Y=\begin{bmatrix} 14\\ -8\\ 17\end{bmatrix}\Rightarrow Y=\begin{bmatrix}14\\ -36\\ -33\end{bmatrix}$$
    • Solving $[U][X]=[Y]$, that is $$\begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 0& -11\end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix}14\\ -36\\ -33\end{bmatrix}$$ $$ \Rightarrow\begin{cases}x=1\\ y=2 \\ z=3\end{cases}$$

Selected Problems

1. Find the $[L]$ and $[U]$ matrices of the following matrix $$\begin{bmatrix}25& 5& 4\\ 75& 7& 16\\ 12.5& 12& 22 \end{bmatrix}$$

Solution:
$$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}\begin{bmatrix}25& 5& 4\\ 75& 7& 16\\ 12.5& 12& 22 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-3R_1\\ R_3-{1\over2}R_1\\ C_1+3C_2\\ C_1+{1\over2}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& 0& 1 \end{bmatrix} \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 9.5& 20 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3+{19\over16}R_2\\C_2-{19\over16}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& -{19\over16}& 1 \end{bmatrix} \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 0& {99\over4} \end{bmatrix}$$ That is, $$L= \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& -{19\over16}& 1 \end{bmatrix},\ U = \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 0& {99\over4} \end{bmatrix}.$$

2. Using LU decomposition to solve: $$\begin{cases} 4x_1 + x_2 - x_3 = -2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6 \end{cases}$$

Solution:
$$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 5& 1& 2\\ 6& 1& 1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\\ C_1+{5\over4}C_2\\ C_1+{3\over2}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 0& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0& -{1\over2}& {5\over2}\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3-2R_2\\ C_2+2C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}$$ That is, $$L = \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix},\ U= \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}.$$ Then we solve $[L][Y]=[B]$, $$\begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix}\cdot Y=\begin{bmatrix}-2\\4\\6\end{bmatrix} \Rightarrow Y=\begin{bmatrix}-2\\{13\over2}\\ -4\end{bmatrix}$$ Finally, we solve $[U][X]=[Y]$, $$\begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}\cdot X= \begin{bmatrix}-2\\{13\over2}\\ -4\end{bmatrix}\Rightarrow X=\begin{bmatrix}3\\-13\\1\end{bmatrix}$$ Thus the solution is $$\begin{cases}x_1 = 3\\ x_2 = -13\\ x_3 = 1\end{cases}$$

3. Find the inverse of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$

Solution:

To find the inverse of a matrix, actually it is to solve a set of equations: $$\begin{cases}AX_1=[1, 0, 0]^{T}\\ AX_2 = [0, 1, 0]^{T}\\ AX_3 = [0, 0, 1]^{T} \end{cases}$$ Firstly, we will find the $[L]$ and $[U]$. $$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-{2\over3}R_1\\ R_3-{8\over3}R_1\\ C_1+{2\over3}C_2\\ C_1+{8\over3}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 0& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0& -{29\over3}& {7\over3}\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3-R_2\\ C_2+C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix}$$ That is, $$L = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix},\ U= \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix}.$$ Then we solve $[L][Y]=[I]$, note that there are three columns of $[Y]$: $$LY_1 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_1 = \begin{bmatrix}1\\0\\0\end{bmatrix} \Rightarrow Y_1=\left[1, -{2\over3}, -2\right]^{T}$$ $$LY_2 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_2 = \begin{bmatrix}0\\1\\0\end{bmatrix} \Rightarrow Y_2=\left[0, 1, -1\right]^{T}$$ $$LY_3 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_3 = \begin{bmatrix}0\\0\\1\end{bmatrix} \Rightarrow Y_3=\left[0, 0, 1\right]^{T}$$ Finally we can solve $[X]$ by $[U][X]=[Y]$: $$UX_1=Y_1\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_1 = \begin{bmatrix}1\\ -{2\over3}\\ -2\end{bmatrix}\Rightarrow X_1= \left[{17\over58}, {9\over58}, -{1\over2}\right]^{T}$$ $$UX_2=Y_2\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_2 = \begin{bmatrix}0\\ 1\\ -1\end{bmatrix}\Rightarrow X_2= \left[{19\over116}, -{7\over116}, -{1\over4}\right]^{T}$$ $$UX_3=Y_3\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_3 = \begin{bmatrix}0\\ 0\\ 1\end{bmatrix}\Rightarrow X_3= \left[-{3\over116}, -{5\over116}, {1\over4}\right]^{T}$$ Thus the inverse of the original matrix is $$[A]^{-1} = \begin{bmatrix}{17\over58} & {19\over116} & -{3\over116}\\ {9\over58} & -{7\over116} & -{5\over116}\\ -{1\over2} & -{1\over4} & {1\over4}\end{bmatrix}$$

A.Kaw矩阵代数初步学习笔记 7. LU Decomposition的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. TinyFrame升级之七:重构Repository和Unit Of Work

    首先,重构的想法来源于以下文章:Correct use of Repository and Unit Of Work patterns in ASP.NET MVC,因为我发现在我的框架中,对Unit ...

  2. Windbg调优Kafka.Client内存泄露

    从来没写过Blog,想想也是,工作十多年了,搞过N多的架构.技术,不与大家分享实在是可惜了.另外,从传统地ERP行业转到互联网,也遇到了很所前所未有的问题,原来知道有一些坑,但是不知道坑太多太深.借着 ...

  3. linux的一些常用命令

    这几天正好在研究linux系统,打算将下一个项目部署在linux系统的服务器上已提高安全性(被window 2003已经折磨的不行了),经过各方了解和深思熟虑后决定使用linux系统的CentOs版本 ...

  4. struts2 访问Web元素的4种方法

    完整代码 :Struts12AccessWebElement.rar 第一种也是最常用的一种方法实现这几个接口 RequestAware,SessionAware,ApplicationAware s ...

  5. 【自己给自己题目做】:如何在Canvas上实现魔方效果

    最终demo -> 3d魔方 体验方法: 浮动鼠标找到合适的位置,按空格键暂停 选择要翻转的3*3模块,找到相邻两个正方体,鼠标点击第一个正方体,并且一直保持鼠标按下的状态直到移到第二个正方体后 ...

  6. swagger editor使用

    swagger editor使用 swagger是一套开源的API设计工具,包括Swagger UI,Swagger Editor等. Swagger Editor 其中Swagger Editor是 ...

  7. 东大OJ-麦森数

    1064: 麦森数 时间限制: 1 Sec  内存限制: 128 MB 提交: 52  解决: 9 [提交][状态][讨论版] 题目描述 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不 ...

  8. MVC认知路【点点滴滴支离破碎】【三】----IIS7.5上部署MVC4.0

    发布web到iis不能运行Google   ----- ╲ http://stackoverflow.com/questions/12057540/installing-asp-net-mvc-4-o ...

  9. cxf和spring结合,发布restFull风格的服务

    rest(Representational State Transfer):表现层状态转化,它是一种风格,用于资源定位,例如:http://ip:port/user/student/001 和资源操作 ...

  10. Linux System and Performance Monitoring

    写在前面:本文是对OSCon09的<Linux System and Performance Monitoring>一文的学习笔记,主要内容是总结了其中的要点,以及加上了笔者自己的一些理解 ...