题意:

  有n个位置,每个位置可以看做一个集合,现在要求你实现一个数据结构支持以下功能:

  1:在a-b的集合中插入一个数

  2:询问a-b集合中所有元素的第k大.

SOL:

  调得火大! 李建说数据结构题能锻炼人,然而我的水平还是太低啊!每次调这种题到最后往往都会变成找不同...日狗!

  树套树的第一题,但是是权值线段树套区间线段树,与心中真正的树套树还是有一点差距-----线段树套平衡树(一直打不完..卡死在不知什么地方).

  对于权值线段树套区间线段树的想法,我们可以这么来看,先考虑在一个序列上询问第k大(不是这个序列的区间,也没有修改),那么我们可以通过线段树维护的两个区间的数的个数----权值线段树,维护插入的数,像我们搞逆序对的那个线段树-------来查询.当我们带上插入操作,那么我们可以在这权值线段树上维护一棵区间线段树,维护的是在外层维护的权值范围内,相应位置的个数.  仔细想仔细想仔细体会.非常有意思.

  带上查询大概就明白了,当我们要查询一个区间(a,b)的第k大,我们想知道的信息有什么呢?有哪些数,这些数在这个区间出现了多少次. 那么这棵线段树可以很好地实现,查询右儿子即在mid---n这些数在a,b上出现了多少次,如果小于k,那么显然这个数只可能在1-mid间,我们只要查询左子树即可.

  这样建树似乎很耗空间,至于省空间的方法,以及无比奇妙的分治方法,以及秒杀一切的套平衡树方法,都一一去实现吧.

CODE:

  代码还是很短的,但是两棵线段树之间的逻辑关系,以及各种点,让调试变得无比困难,所以要一次打对,这也是代码能力的体现吧

/*==========================================================================
# Last modified: 2016-02-23 19:07
# Filename: 3110.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 15000000
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
int sum[maxn],ch[maxn][2],v[maxn],lazy[maxn],root[maxn];
int L,R,m,n,cnt=0;
//void pushup(int node,int l,int r){sum[node]=sum[ch[node][1]]+sum[ch[node][0]]+lazy[node]*(r-l+1);}
int _count(int node,int l,int r){
if (L<=l && r<=R) return sum[node];
int mid=rs(l,r),t=0;
if (L<=mid) t+=_count(ch[node][0],l,mid);
if (R>mid) t+=_count(ch[node][1],mid+1,r);
return t+lazy[node]*(min(r,R)-max(L,l)+1);
}
int query(int node,int l,int r,int k){
if (l==r) return l;
int mid=rs(l,r),lc=ls(node,0),rc=lc|1;
int t=_count(root[lc],1,n);
if (t>=k) query(lc,l,mid,k);
else query(rc,mid+1,r,k-t);
}
void updata(int &o,int l,int r){
if (!o) o=++cnt;
if (L<=l && r<=R) {sum[o]+=r-l+1; lazy[o]++; return ;}
int mid=rs(l,r);
if (L<=mid) updata(ch[o][0],l,mid);
if (R>mid) updata(ch[o][1],mid+1,r);
//pushup(o,l,r);
sum[o]=sum[ch[o][1]]+sum[ch[o][0]]+lazy[o]*(r-l+1);
}
void insert(int node,int l,int r,int x){
//if (root[node]==0) root[node]=++cnt;
updata(root[node],1,n);
if (l==r) return;
int mid=rs(l,r),lc=ls(node,0),rc=lc|1;
if (x<=mid) insert(lc,l,mid,x);
else insert(rc,mid+1,r,x);
}
int main(){
read(n); read(m);
memset(root,0,sizeof(root));
FORP(i,1,m){
int flag,x,y;
int k;
read(flag); read(L); read(R); read(k);
if (flag==1) k=n-k+1,insert(1,1,n,k);
else printf("%d\n",n-query(1,1,n,k)+1);
}
}

BZOJ 3110 k大数查询 & 树套树的更多相关文章

  1. BZOJ 3110 K大数查询 | 整体二分

    BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...

  2. [BZOJ]3110 K大数查询(ZJOI2013)

    这大概是唯一一道小C重写了4次的题目. 姿势不对的树套树(Fail) → 分块(Fail) → 整体二分(Succeed) → 树套树(Succeed). 让小C写点心得静静. Description ...

  3. bzoj 3110 K大数查询

    第一道整体二分,因为只需要知道每个询问区间中比mid大的数有多少个,就可以直接用线段树区间加,区间求和了. #include<iostream> #include<cstdio> ...

  4. P3332 [ZJOI2013]K大数查询(线段树套线段树+标记永久化)

    P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树 把插入的值离散化一下开个线段树 蓝后每个节点开个线段树,维护一下每个数出现的区间和次数 为了防止MLE动态开点就好辣 重点是标记永久 ...

  5. BZOJ3110 K大数查询 【线段树 + 整体二分 或 树套树(非正解)】

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  6. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  7. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  8. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

  9. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

随机推荐

  1. 使用C与C++混合编程封装UDP协议

    引入头文件,导入lib文件 #include <stdio.h> #include <stdlib.h> #include <string.h> #include ...

  2. CLR via C#学习笔记----知识总概括

    第1章 CLR的执行模型 托管模块的各个组成部分:PE32或PE32+头,CLR头,元数据,IL(中间语言)代码. 高级语言通常只公开了CLR的所有功能的一个子集.然而,IL汇编语言允许开发人员访问C ...

  3. 情定XMLA,割舍不下的XAML

    俗话说,不玩Silverlight的APP Developer,在DBA圈里就不是好的数据分析师.嗯,你没看错,题目里,一样东西是XMLA,一样东西是XAML.前者是用来玩SSAS的 ,一样是用来玩S ...

  4. thinkphp分页样式

    html代码: <div class="pages">{$page}</div> css代码: .pages{ width:100.5%; text-ali ...

  5. 动软MySQL存储过程模板

    <#@ template language="c#" HostSpecific="True" #><#@ output extension= ...

  6. [Mobile] 手机浏览器输入框-数字输入框

    手机浏览器的输入框,一直都是以web的方式进行开发的,没有关注到用户体验,领导提出了输入框要弹出数字输入框,想来应该有这种技术能实现.   搜索之后发现可以使用type="number&qu ...

  7. HR外包系统 - 员工项目 薪资项目 考勤项目 -管理

    项目管理-包括员工项目 薪资项目 考勤项目 一 后台总公司定义项目-前台分公司选择项目,定义别名-分公司客户选择员工项目,定义别名 分公司下面-新建薪资类别-薪资类别下面选择要的薪资和考勤项目. 二 ...

  8. python web编程-CGI帮助web服务器处理客户端编程

    这几篇博客均来自python核心编程 如果你有任何疑问,欢迎联系我或者仔细查看这本书的地20章 另外推荐下这本书,希望对学习python的同学有所帮助 概念预热 eb客户端通过url请求web服务器里 ...

  9. 获取APK签名

    获取apk签名工具类 import android.content.Context; import android.content.pm.PackageInfo; import android.con ...

  10. OGNL表示式使用和值栈

    另外值得参考博客:http://blog.csdn.net/resigshy/article/details/7560573 OGNL是Object Graphic Navigation Langua ...